Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

75/125 =(cosh(0.2x))/(cosh(0.4x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

12575​=cosh(0.4x)cosh(0.2x)​

Solution

x=ln(0.03402…),x=ln(29.38731…)
+1
Degrees
x=−193.69199…∘,x=193.69199…∘
Solution steps
12575​=cosh(0.4x)cosh(0.2x)​
Switch sidescosh(0.4x)cosh(0.2x)​=12575​
Rewrite using trig identities
cosh(0.4x)cosh(0.2x)​=12575​
Use the Hyperbolic identity: cosh(x)=2ex+e−x​2e0.4x+e−0.4x​2e0.2x+e−0.2x​​=12575​
2e0.4x+e−0.4x​2e0.2x+e−0.2x​​=12575​
2e0.4x+e−0.4x​2e0.2x+e−0.2x​​=12575​:x=ln(0.03402…),x=ln(29.38731…)
2e0.4x+e−0.4x​2e0.2x+e−0.2x​​=12575​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c2e0.2x+e−0.2x​⋅125=2e0.4x+e−0.4x​⋅75
Multiply both sides by 22e0.2x+e−0.2x​⋅125⋅2=2e0.4x+e−0.4x​⋅75⋅2
Simplify125(e0.2x+e−0.2x)=75(e0.4x+e−0.4x)
Apply exponent rules
125(e0.2x+e−0.2x)=75(e0.4x+e−0.4x)
Apply exponent rule: abc=(ab)ce0.2x=(ex)0.2,e−0.2x=(ex)−0.2,e0.4x=(ex)0.4,e−0.4x=(ex)−0.4125((ex)0.2+(ex)−0.2)=75((ex)0.4+(ex)−0.4)
125((ex)0.2+(ex)−0.2)=75((ex)0.4+(ex)−0.4)
Rewrite the equation with ex=u125((u)0.2+(u)−0.2)=75((u)0.4+(u)−0.4)
Solve 125(u0.2+u−0.2)=75(u0.4+u−0.4):u=0.03402…,u=29.38731…
125(u0.2+u−0.2)=75(u0.4+u−0.4)
Expand 125(u0.2+u−0.2):125u0.2+u0.2125​
125(u0.2+u−0.2)
Apply exponent rule: a−b=ab1​=125(u0.2+u0.21​)
Apply the distributive law: a(b+c)=ab+aca=125,b=u0.2,c=u0.21​=125u0.2+125⋅u0.21​
125⋅u0.21​=u0.2125​
125⋅u0.21​
Multiply fractions: a⋅cb​=ca⋅b​=u0.21⋅125​
Multiply the numbers: 1⋅125=125=u0.2125​
=125u0.2+u0.2125​
Expand 75(u0.4+u−0.4):75u0.4+u0.475​
75(u0.4+u−0.4)
Apply exponent rule: a−b=ab1​=75(u0.4+u0.41​)
Apply the distributive law: a(b+c)=ab+aca=75,b=u0.4,c=u0.41​=75u0.4+75⋅u0.41​
75⋅u0.41​=u0.475​
75⋅u0.41​
Multiply fractions: a⋅cb​=ca⋅b​=u0.41⋅75​
Multiply the numbers: 1⋅75=75=u0.475​
=75u0.4+u0.475​
125u0.2+u0.2125​=75u0.4+u0.475​
Use the following exponent property
Rewrite the equation with 125v+v125​=75v2+v275​
Solve 125v+v125​=75v2+v275​:v≈0.50859…,v≈1.96621…
125v+v125​=75v2+v275​
Multiply by LCM
125v+v125​=75v2+v275​
Find Least Common Multiplier of v,v2:v2
v,v2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in v or v2=v2
Multiply by LCM=v2125vv2+v125​v2=75v2v2+v275​v2
Simplify
125vv2+v125​v2=75v2v2+v275​v2
Simplify 125vv2:125v3
125vv2
Apply exponent rule: ab⋅ac=ab+cvv2=v1+2=125v1+2
Add the numbers: 1+2=3=125v3
Simplify v125​v2:125v
v125​v2
Multiply fractions: a⋅cb​=ca⋅b​=v125v2​
Cancel the common factor: v=125v
Simplify 75v2v2:75v4
75v2v2
Apply exponent rule: ab⋅ac=ab+cv2v2=v2+2=75v2+2
Add the numbers: 2+2=4=75v4
Simplify v275​v2:75
v275​v2
Multiply fractions: a⋅cb​=ca⋅b​=v275v2​
Cancel the common factor: v2=75
125v3+125v=75v4+75
125v3+125v=75v4+75
125v3+125v=75v4+75
Solve 125v3+125v=75v4+75:v≈0.50859…,v≈1.96621…
125v3+125v=75v4+75
Switch sides75v4+75=125v3+125v
Move 125vto the left side
75v4+75=125v3+125v
Subtract 125v from both sides75v4+75−125v=125v3+125v−125v
Simplify75v4+75−125v=125v3
75v4+75−125v=125v3
Move 125v3to the left side
75v4+75−125v=125v3
Subtract 125v3 from both sides75v4+75−125v−125v3=125v3−125v3
Simplify75v4+75−125v−125v3=0
75v4+75−125v−125v3=0
Write in the standard form an​xn+…+a1​x+a0​=075v4−125v3−125v+75=0
Find one solution for 75v4−125v3−125v+75=0 using Newton-Raphson:v≈0.50859…
75v4−125v3−125v+75=0
Newton-Raphson Approximation Definition
f(v)=75v4−125v3−125v+75
Find f′(v):300v3−375v2−125
dvd​(75v4−125v3−125v+75)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(75v4)−dvd​(125v3)−dvd​(125v)+dvd​(75)
dvd​(75v4)=300v3
dvd​(75v4)
Take the constant out: (a⋅f)′=a⋅f′=75dvd​(v4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=75⋅4v4−1
Simplify=300v3
dvd​(125v3)=375v2
dvd​(125v3)
Take the constant out: (a⋅f)′=a⋅f′=125dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=125⋅3v3−1
Simplify=375v2
dvd​(125v)=125
dvd​(125v)
Take the constant out: (a⋅f)′=a⋅f′=125dvdv​
Apply the common derivative: dvdv​=1=125⋅1
Simplify=125
dvd​(75)=0
dvd​(75)
Derivative of a constant: dxd​(a)=0=0
=300v3−375v2−125+0
Simplify=300v3−375v2−125
Let v0​=1Compute vn+1​ until Δvn+1​<0.000001
v1​=0.5:Δv1​=0.5
f(v0​)=75⋅14−125⋅13−125⋅1+75=−100f′(v0​)=300⋅13−375⋅12−125=−200v1​=0.5
Δv1​=∣0.5−1∣=0.5Δv1​=0.5
v2​=0.50862…:Δv2​=0.00862…
f(v1​)=75⋅0.54−125⋅0.53−125⋅0.5+75=1.5625f′(v1​)=300⋅0.53−375⋅0.52−125=−181.25v2​=0.50862…
Δv2​=∣0.50862…−0.5∣=0.00862…Δv2​=0.00862…
v3​=0.50859…:Δv3​=0.00003…
f(v2​)=75⋅0.50862…4−125⋅0.50862…3−125⋅0.50862…+75=−0.00555…f′(v2​)=300⋅0.50862…3−375⋅0.50862…2−125=−182.53733…v3​=0.50859…
Δv3​=∣0.50859…−0.50862…∣=0.00003…Δv3​=0.00003…
v4​=0.50859…:Δv4​=3.77392E−10
f(v3​)=75⋅0.50859…4−125⋅0.50859…3−125⋅0.50859…+75=−6.88864E−8f′(v3​)=300⋅0.50859…3−375⋅0.50859…2−125=−182.53281…v4​=0.50859…
Δv4​=∣0.50859…−0.50859…∣=3.77392E−10Δv4​=3.77392E−10
v≈0.50859…
Apply long division:v−0.50859…75v4−125v3−125v+75​=75v3−86.85573…v2−44.17397…v−147.46645…
75v3−86.85573…v2−44.17397…v−147.46645…≈0
Find one solution for 75v3−86.85573…v2−44.17397…v−147.46645…=0 using Newton-Raphson:v≈1.96621…
75v3−86.85573…v2−44.17397…v−147.46645…=0
Newton-Raphson Approximation Definition
f(v)=75v3−86.85573…v2−44.17397…v−147.46645…
Find f′(v):225v2−173.71146…v−44.17397…
dvd​(75v3−86.85573…v2−44.17397…v−147.46645…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(75v3)−dvd​(86.85573…v2)−dvd​(44.17397…v)−dvd​(147.46645…)
dvd​(75v3)=225v2
dvd​(75v3)
Take the constant out: (a⋅f)′=a⋅f′=75dvd​(v3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=75⋅3v3−1
Simplify=225v2
dvd​(86.85573…v2)=173.71146…v
dvd​(86.85573…v2)
Take the constant out: (a⋅f)′=a⋅f′=86.85573…dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=86.85573…⋅2v2−1
Simplify=173.71146…v
dvd​(44.17397…v)=44.17397…
dvd​(44.17397…v)
Take the constant out: (a⋅f)′=a⋅f′=44.17397…dvdv​
Apply the common derivative: dvdv​=1=44.17397…⋅1
Simplify=44.17397…
dvd​(147.46645…)=0
dvd​(147.46645…)
Derivative of a constant: dxd​(a)=0=0
=225v2−173.71146…v−44.17397…−0
Simplify=225v2−173.71146…v−44.17397…
Let v0​=−3Compute vn+1​ until Δvn+1​<0.000001
v1​=−1.87222…:Δv1​=1.12777…
f(v0​)=75(−3)3−86.85573…(−3)2−44.17397…(−3)−147.46645…=−2821.64610…f′(v0​)=225(−3)2−173.71146…(−3)−44.17397…=2501.96041…v1​=−1.87222…
Δv1​=∣−1.87222…−(−3)∣=1.12777…Δv1​=1.12777…
v2​=−1.06697…:Δv2​=0.80525…
f(v1​)=75(−1.87222…)3−86.85573…(−1.87222…)2−44.17397…(−1.87222…)−147.46645…=−861.40576…f′(v1​)=225(−1.87222…)2−173.71146…(−1.87222…)−44.17397…=1069.72985…v2​=−1.06697…
Δv2​=∣−1.06697…−(−1.87222…)∣=0.80525…Δv2​=0.80525…
v3​=−0.33628…:Δv3​=0.73068…
f(v2​)=75(−1.06697…)3−86.85573…(−1.06697…)2−44.17397…(−1.06697…)−147.46645…=−290.31297…f′(v2​)=225(−1.06697…)2−173.71146…(−1.06697…)−44.17397…=397.31688…v3​=−0.33628…
Δv3​=∣−0.33628…−(−1.06697…)∣=0.73068…Δv3​=0.73068…
v4​=3.32442…:Δv4​=3.66071…
f(v3​)=75(−0.33628…)3−86.85573…(−0.33628…)2−44.17397…(−0.33628…)−147.46645…=−145.28601…f′(v3​)=225(−0.33628…)2−173.71146…(−0.33628…)−44.17397…=39.68787…v4​=3.32442…
Δv4​=∣3.32442…−(−0.33628…)∣=3.66071…Δv4​=3.66071…
v5​=2.51941…:Δv5​=0.80501…
f(v4​)=75⋅3.32442…3−86.85573…⋅3.32442…2−44.17397…⋅3.32442…−147.46645…=1501.34112…f′(v4​)=225⋅3.32442…2−173.71146…⋅3.32442…−44.17397…=1864.99529…v5​=2.51941…
Δv5​=∣2.51941…−3.32442…∣=0.80501…Δv5​=0.80501…
v6​=2.10802…:Δv6​=0.41139…
f(v5​)=75⋅2.51941…3−86.85573…⋅2.51941…2−44.17397…⋅2.51941…−147.46645…=389.32098…f′(v5​)=225⋅2.51941…2−173.71146…⋅2.51941…−44.17397…=946.35416…v6​=2.10802…
Δv6​=∣2.10802…−2.51941…∣=0.41139…Δv6​=0.41139…
v7​=1.97907…:Δv7​=0.12895…
f(v6​)=75⋅2.10802…3−86.85573…⋅2.10802…2−44.17397…⋅2.10802…−147.46645…=76.01658…f′(v6​)=225⋅2.10802…2−173.71146…⋅2.10802…−44.17397…=589.48794…v7​=1.97907…
Δv7​=∣1.97907…−2.10802…∣=0.12895…Δv7​=0.12895…
v8​=1.96633…:Δv8​=0.01273…
f(v7​)=75⋅1.97907…3−86.85573…⋅1.97907…2−44.17397…⋅1.97907…−147.46645…=6.28209…f′(v7​)=225⋅1.97907…2−173.71146…⋅1.97907…−44.17397…=493.30322…v8​=1.96633…
Δv8​=∣1.96633…−1.97907…∣=0.01273…Δv8​=0.01273…
v9​=1.96621…:Δv9​=0.00011…
f(v8​)=75⋅1.96633…3−86.85573…⋅1.96633…2−44.17397…⋅1.96633…−147.46645…=0.05797…f′(v8​)=225⋅1.96633…2−173.71146…⋅1.96633…−44.17397…=484.21052…v9​=1.96621…
Δv9​=∣1.96621…−1.96633…∣=0.00011…Δv9​=0.00011…
v10​=1.96621…:Δv10​=1.05283E−8
f(v9​)=75⋅1.96621…3−86.85573…⋅1.96621…2−44.17397…⋅1.96621…−147.46645…=5.097E−6f′(v9​)=225⋅1.96621…2−173.71146…⋅1.96621…−44.17397…=484.12538…v10​=1.96621…
Δv10​=∣1.96621…−1.96621…∣=1.05283E−8Δv10​=1.05283E−8
v≈1.96621…
Apply long division:v−1.96621…75v3−86.85573…v2−44.17397…v−147.46645…​=75v2+60.61072…v+75
75v2+60.61072…v+75≈0
Find one solution for 75v2+60.61072…v+75=0 using Newton-Raphson:No Solution for v∈R
75v2+60.61072…v+75=0
Newton-Raphson Approximation Definition
f(v)=75v2+60.61072…v+75
Find f′(v):150v+60.61072…
dvd​(75v2+60.61072…v+75)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dvd​(75v2)+dvd​(60.61072…v)+dvd​(75)
dvd​(75v2)=150v
dvd​(75v2)
Take the constant out: (a⋅f)′=a⋅f′=75dvd​(v2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=75⋅2v2−1
Simplify=150v
dvd​(60.61072…v)=60.61072…
dvd​(60.61072…v)
Take the constant out: (a⋅f)′=a⋅f′=60.61072…dvdv​
Apply the common derivative: dvdv​=1=60.61072…⋅1
Simplify=60.61072…
dvd​(75)=0
dvd​(75)
Derivative of a constant: dxd​(a)=0=0
=150v+60.61072…+0
Simplify=150v+60.61072…
Let v0​=−1Compute vn+1​ until Δvn+1​<0.000001
v1​=6.66134E−16:Δv1​=1
f(v0​)=75(−1)2+60.61072…(−1)+75=89.38927…f′(v0​)=150(−1)+60.61072…=−89.38927…v1​=6.66134E−16
Δv1​=∣6.66134E−16−(−1)∣=1Δv1​=1
v2​=−1.23740…:Δv2​=1.23740…
f(v1​)=75⋅6.66134E−162+60.61072…⋅6.66134E−16+75=75f′(v1​)=150⋅6.66134E−16+60.61072…=60.61072…v2​=−1.23740…
Δv2​=∣−1.23740…−6.66134E−16∣=1.23740…Δv2​=1.23740…
v3​=−0.31870…:Δv3​=0.91870…
f(v2​)=75(−1.23740…)2+60.61072…(−1.23740…)+75=114.83780…f′(v2​)=150(−1.23740…)+60.61072…=−124.99999…v3​=−0.31870…
Δv3​=∣−0.31870…−(−1.23740…)∣=0.91870…Δv3​=0.91870…
v4​=−5.26202…:Δv4​=4.94332…
f(v3​)=75(−0.31870…)2+60.61072…(−0.31870…)+75=63.30105…f′(v3​)=150(−0.31870…)+60.61072…=12.80536…v4​=−5.26202…
Δv4​=∣−5.26202…−(−0.31870…)∣=4.94332…Δv4​=4.94332…
v5​=−2.74693…:Δv5​=2.51509…
f(v4​)=75(−5.26202…)2+60.61072…(−5.26202…)+75=1832.73443…f′(v4​)=150(−5.26202…)+60.61072…=−728.69334…v5​=−2.74693…
Δv5​=∣−2.74693…−(−5.26202…)∣=2.51509…Δv5​=2.51509…
v6​=−1.39693…:Δv6​=1.34999…
f(v5​)=75(−2.74693…)2+60.61072…(−2.74693…)+75=474.42846…f′(v5​)=150(−2.74693…)+60.61072…=−351.42879…v6​=−1.39693…
Δv6​=∣−1.39693…−(−2.74693…)∣=1.34999…Δv6​=1.34999…
v7​=−0.47912…:Δv7​=0.91780…
f(v6​)=75(−1.39693…)2+60.61072…(−1.39693…)+75=136.68726…f′(v6​)=150(−1.39693…)+60.61072…=−148.92897…v7​=−0.47912…
Δv7​=∣−0.47912…−(−1.39693…)∣=0.91780…Δv7​=0.91780…
v8​=5.13225…:Δv8​=5.61138…
f(v7​)=75(−0.47912…)2+60.61072…(−0.47912…)+75=63.17699…f′(v7​)=150(−0.47912…)+60.61072…=−11.25871…v8​=5.13225…
Δv8​=∣5.13225…−(−0.47912…)∣=5.61138…Δv8​=5.61138…
v9​=2.28852…:Δv9​=2.84373…
f(v8​)=75⋅5.13225…2+60.61072…⋅5.13225…+75=2361.57320…f′(v8​)=150⋅5.13225…+60.61072…=830.44904…v9​=2.28852…
Δv9​=∣2.28852…−5.13225…∣=2.84373…Δv9​=2.84373…
v10​=0.78685…:Δv10​=1.50167…
f(v9​)=75⋅2.28852…2+60.61072…⋅2.28852…+75=606.51019…f′(v9​)=150⋅2.28852…+60.61072…=403.88948…v10​=0.78685…
Δv10​=∣0.78685…−2.28852…∣=1.50167…Δv10​=1.50167…
v11​=−0.15990…:Δv11​=0.94675…
f(v10​)=75⋅0.78685…2+60.61072…⋅0.78685…+75=169.12677…f′(v10​)=150⋅0.78685…+60.61072…=178.63844…v11​=−0.15990…
Δv11​=∣−0.15990…−0.78685…∣=0.94675…Δv11​=0.94675…
v12​=−1.99540…:Δv12​=1.83550…
f(v11​)=75(−0.15990…)2+60.61072…(−0.15990…)+75=67.22582…f′(v11​)=150(−0.15990…)+60.61072…=36.62524…v12​=−1.99540…
Δv12​=∣−1.99540…−(−0.15990…)∣=1.83550…Δv12​=1.83550…
Cannot find solution
The solutions arev≈0.50859…,v≈1.96621…
v≈0.50859…,v≈1.96621…
Verify Solutions
Find undefined (singularity) points:v=0
Take the denominator(s) of 125v+v125​ and compare to zero
v=0
Take the denominator(s) of 75v2+v275​ and compare to zero
Solve v2=0:v=0
v2=0
Apply rule xn=0⇒x=0
v=0
The following points are undefinedv=0
Combine undefined points with solutions:
v≈0.50859…,v≈1.96621…
v≈0.50859…,v≈1.96621…
Substitute back solve for u
Solve
Take both sides of the equation to the power of 5:u=0.03402…
Expand
Apply radical rule: =(u51​)5
Apply exponent rule: (ab)c=abc=u51​⋅5
51​⋅5=1
51​⋅5
Multiply fractions: a⋅cb​=ca⋅b​=51⋅5​
Cancel the common factor: 5=1
=u
Expand 0.50859…5:0.03402…
0.50859…5
0.50859…5=0.03402…=0.03402…
u=0.03402…
u=0.03402…
Verify Solutions:u=0.03402…True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=0.03402…:True
=0.50859…
0.50859…=0.50859…
True
The solution isu=0.03402…
Solve
Take both sides of the equation to the power of 5:u=29.38731…
Expand
Apply radical rule: =(u51​)5
Apply exponent rule: (ab)c=abc=u51​⋅5
51​⋅5=1
51​⋅5
Multiply fractions: a⋅cb​=ca⋅b​=51⋅5​
Cancel the common factor: 5=1
=u
Expand 1.96621…5:29.38731…
1.96621…5
1.96621…5=29.38731…=29.38731…
u=29.38731…
u=29.38731…
Verify Solutions:u=29.38731…True
Check the solutions by plugging them into
Remove the ones that don't agree with the equation.
Plug in u=29.38731…:True
=1.96621…
1.96621…=1.96621…
True
The solution isu=29.38731…
u=0.03402…,u=29.38731…
Verify Solutions:u=0.03402…True,u=29.38731…True
Check the solutions by plugging them into 125(u0.2+u−0.2)=75(u0.4+u−0.4)
Remove the ones that don't agree with the equation.
Plug in u=0.03402…:True
125(0.03402…0.2+0.03402…−0.2)=75(0.03402…0.4+0.03402…−0.4)
125(0.03402…0.2+0.03402…−0.2)=309.35120…
125(0.03402…0.2+0.03402…−0.2)
0.03402…0.2=0.50859…=125(0.50859…+0.03402…−0.2)
0.03402…−0.2=1.96621…=125(0.50859…+1.96621…)
Add the numbers: 0.50859…+1.96621…=2.47480…=125⋅2.47480…
Multiply the numbers: 125⋅2.47480…=309.35120…=309.35120…
75(0.03402…0.4+0.03402…−0.4)=309.35120…
75(0.03402…0.4+0.03402…−0.4)
0.03402…0.4=0.25866…=75(0.25866…+0.03402…−0.4)
0.03402…−0.4=3.86601…=75(0.25866…+3.86601…)
Add the numbers: 0.25866…+3.86601…=4.12468…=75⋅4.12468…
Multiply the numbers: 75⋅4.12468…=309.35120…=309.35120…
309.35120…=309.35120…
True
Plug in u=29.38731…:True
125(29.38731…0.2+29.38731…−0.2)=75(29.38731…0.4+29.38731…−0.4)
125(29.38731…0.2+29.38731…−0.2)=309.35120…
125(29.38731…0.2+29.38731…−0.2)
29.38731…0.2=1.96621…=125(1.96621…+29.38731…−0.2)
29.38731…−0.2=0.50859…=125(0.50859…+1.96621…)
Add the numbers: 1.96621…+0.50859…=2.47480…=125⋅2.47480…
Multiply the numbers: 125⋅2.47480…=309.35120…=309.35120…
75(29.38731…0.4+29.38731…−0.4)=309.35120…
75(29.38731…0.4+29.38731…−0.4)
29.38731…0.4=3.86601…=75(3.86601…+29.38731…−0.4)
29.38731…−0.4=0.25866…=75(0.25866…+3.86601…)
Add the numbers: 3.86601…+0.25866…=4.12468…=75⋅4.12468…
Multiply the numbers: 75⋅4.12468…=309.35120…=309.35120…
309.35120…=309.35120…
True
The solutions areu=0.03402…,u=29.38731…
u=0.03402…,u=29.38731…
Substitute back u=ex,solve for x
Solve ex=0.03402…:x=ln(0.03402…)
ex=0.03402…
Apply exponent rules
ex=0.03402…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(0.03402…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(0.03402…)
x=ln(0.03402…)
Solve ex=29.38731…:x=ln(29.38731…)
ex=29.38731…
Apply exponent rules
ex=29.38731…
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(29.38731…)
Apply log rule: ln(ea)=aln(ex)=xx=ln(29.38731…)
x=ln(29.38731…)
x=ln(0.03402…),x=ln(29.38731…)
Verify Solutions:x=ln(0.03402…)True,x=ln(29.38731…)True
Check the solutions by plugging them into 2e0.4x+e−0.4x​2e0.2x+e−0.2x​​=12575​
Remove the ones that don't agree with the equation.
Plug in x=ln(0.03402…):True
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)​2e0.2ln(0.03402…)+e−0.2ln(0.03402…)​​=12575​
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)​2e0.2ln(0.03402…)+e−0.2ln(0.03402…)​​=0.6
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)​2e0.2ln(0.03402…)+e−0.2ln(0.03402…)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(e0.4ln(0.03402…)+e−0.4ln(0.03402…))(e0.2ln(0.03402…)+e−0.2ln(0.03402…))⋅2​
Cancel the common factor: 2=e0.4ln(0.03402…)+e−0.4ln(0.03402…)e0.2ln(0.03402…)+e−0.2ln(0.03402…)​
e0.4ln(0.03402…)=0.03402…0.4
e0.4ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))0.4
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…0.4
e−0.4ln(0.03402…)=0.03402…−0.4
e−0.4ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))−0.4
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…−0.4
=0.03402…0.4+0.03402…−0.4e0.2ln(0.03402…)+e−0.2ln(0.03402…)​
e0.2ln(0.03402…)=0.03402…0.2
e0.2ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))0.2
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…0.2
e−0.2ln(0.03402…)=0.03402…−0.2
e−0.2ln(0.03402…)
Apply exponent rule: abc=(ab)c=(eln(0.03402…))−0.2
Apply log rule: aloga​(b)=beln(0.03402…)=0.03402…=0.03402…−0.2
=0.03402…0.4+0.03402…−0.40.03402…0.2+0.03402…−0.2​
Simplify
0.03402…0.4+0.03402…−0.40.03402…0.2+0.03402…−0.2​
Apply exponent rule: a−b=ab1​0.03402…−0.4=0.03402…0.41​=0.03402…0.4+0.03402…0.41​0.03402…0.2+0.03402…−0.2​
Apply exponent rule: a−b=ab1​0.03402…−0.2=0.03402…0.21​=0.03402…0.4+0.03402…0.41​0.03402…0.2+0.03402…0.21​​
Join 0.03402…0.4+0.03402…0.41​:4.12468…
0.03402…0.4+0.03402…0.41​
Convert element to fraction: 0.03402…0.4=0.03402…0.40.03402…0.4⋅0.03402…0.4​=0.03402…0.40.03402…0.4⋅0.03402…0.4​+0.03402…0.41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=0.03402…0.40.03402…0.4⋅0.03402…0.4+1​
0.03402…0.4⋅0.03402…0.4+1=0.03402…0.8+1
0.03402…0.4⋅0.03402…0.4+1
0.03402…0.4⋅0.03402…0.4=0.03402…0.8
0.03402…0.4⋅0.03402…0.4
Apply exponent rule: ab⋅ac=ab+c0.03402…0.4⋅0.03402…0.4=0.03402…0.4+0.4=0.03402…0.4+0.4
Add the numbers: 0.4+0.4=0.8=0.03402…0.8
=0.03402…0.8+1
=0.03402…0.40.03402…0.8+1​
0.03402…0.8=0.06690…=0.03402…0.40.06690…+1​
Add the numbers: 0.06690…+1=1.06690…=0.03402…0.41.06690…​
0.03402…0.4=0.25866…=0.25866…1.06690…​
Divide the numbers: 0.25866…1.06690…​=4.12468…=4.12468…
=4.12468…0.03402…0.2+0.03402…0.21​​
Join 0.03402…0.2+0.03402…0.21​:2.47480…
0.03402…0.2+0.03402…0.21​
Convert element to fraction: 0.03402…0.2=0.03402…0.20.03402…0.2⋅0.03402…0.2​=0.03402…0.20.03402…0.2⋅0.03402…0.2​+0.03402…0.21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=0.03402…0.20.03402…0.2⋅0.03402…0.2+1​
0.03402…0.2⋅0.03402…0.2+1=0.03402…0.4+1
0.03402…0.2⋅0.03402…0.2+1
0.03402…0.2⋅0.03402…0.2=0.03402…0.4
0.03402…0.2⋅0.03402…0.2
Apply exponent rule: ab⋅ac=ab+c0.03402…0.2⋅0.03402…0.2=0.03402…0.2+0.2=0.03402…0.2+0.2
Add the numbers: 0.2+0.2=0.4=0.03402…0.4
=0.03402…0.4+1
=0.03402…0.20.03402…0.4+1​
0.03402…0.4=0.25866…=0.03402…0.20.25866…+1​
Add the numbers: 0.25866…+1=1.25866…=0.03402…0.21.25866…​
0.03402…0.2=0.50859…=0.50859…1.25866…​
Divide the numbers: 0.50859…1.25866…​=2.47480…=2.47480…
=4.12468…2.47480…​
Divide the numbers: 4.12468…2.47480…​=0.6=0.6
=0.6
12575​=53​
12575​
Cancel the common factor: 25=53​
0.6=53​
True
Plug in x=ln(29.38731…):True
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)​2e0.2ln(29.38731…)+e−0.2ln(29.38731…)​​=12575​
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)​2e0.2ln(29.38731…)+e−0.2ln(29.38731…)​​=0.6
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)​2e0.2ln(29.38731…)+e−0.2ln(29.38731…)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(e0.4ln(29.38731…)+e−0.4ln(29.38731…))(e0.2ln(29.38731…)+e−0.2ln(29.38731…))⋅2​
Cancel the common factor: 2=e0.4ln(29.38731…)+e−0.4ln(29.38731…)e0.2ln(29.38731…)+e−0.2ln(29.38731…)​
e0.4ln(29.38731…)=29.38731…0.4
e0.4ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))0.4
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…0.4
e−0.4ln(29.38731…)=29.38731…−0.4
e−0.4ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))−0.4
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…−0.4
=29.38731…0.4+29.38731…−0.4e0.2ln(29.38731…)+e−0.2ln(29.38731…)​
e0.2ln(29.38731…)=29.38731…0.2
e0.2ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))0.2
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…0.2
e−0.2ln(29.38731…)=29.38731…−0.2
e−0.2ln(29.38731…)
Apply exponent rule: abc=(ab)c=(eln(29.38731…))−0.2
Apply log rule: aloga​(b)=beln(29.38731…)=29.38731…=29.38731…−0.2
=29.38731…0.4+29.38731…−0.429.38731…0.2+29.38731…−0.2​
Simplify
29.38731…0.4+29.38731…−0.429.38731…0.2+29.38731…−0.2​
Apply exponent rule: a−b=ab1​29.38731…−0.4=29.38731…0.41​=29.38731…0.4+29.38731…0.41​29.38731…0.2+29.38731…−0.2​
Apply exponent rule: a−b=ab1​29.38731…−0.2=29.38731…0.21​=29.38731…0.4+29.38731…0.41​29.38731…0.2+29.38731…0.21​​
Join 29.38731…0.4+29.38731…0.41​:4.12468…
29.38731…0.4+29.38731…0.41​
Convert element to fraction: 29.38731…0.4=29.38731…0.429.38731…0.4⋅29.38731…0.4​=29.38731…0.429.38731…0.4⋅29.38731…0.4​+29.38731…0.41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=29.38731…0.429.38731…0.4⋅29.38731…0.4+1​
29.38731…0.4⋅29.38731…0.4+1=29.38731…0.8+1
29.38731…0.4⋅29.38731…0.4+1
29.38731…0.4⋅29.38731…0.4=29.38731…0.8
29.38731…0.4⋅29.38731…0.4
Apply exponent rule: ab⋅ac=ab+c29.38731…0.4⋅29.38731…0.4=29.38731…0.4+0.4=29.38731…0.4+0.4
Add the numbers: 0.4+0.4=0.8=29.38731…0.8
=29.38731…0.8+1
=29.38731…0.429.38731…0.8+1​
29.38731…0.8=14.94610…=29.38731…0.414.94610…+1​
Add the numbers: 14.94610…+1=15.94610…=29.38731…0.415.94610…​
29.38731…0.4=3.86601…=3.86601…15.94610…​
Divide the numbers: 3.86601…15.94610…​=4.12468…=4.12468…
=4.12468…29.38731…0.2+29.38731…0.21​​
Join 29.38731…0.2+29.38731…0.21​:2.47480…
29.38731…0.2+29.38731…0.21​
Convert element to fraction: 29.38731…0.2=29.38731…0.229.38731…0.2⋅29.38731…0.2​=29.38731…0.229.38731…0.2⋅29.38731…0.2​+29.38731…0.21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=29.38731…0.229.38731…0.2⋅29.38731…0.2+1​
29.38731…0.2⋅29.38731…0.2+1=29.38731…0.4+1
29.38731…0.2⋅29.38731…0.2+1
29.38731…0.2⋅29.38731…0.2=29.38731…0.4
29.38731…0.2⋅29.38731…0.2
Apply exponent rule: ab⋅ac=ab+c29.38731…0.2⋅29.38731…0.2=29.38731…0.2+0.2=29.38731…0.2+0.2
Add the numbers: 0.2+0.2=0.4=29.38731…0.4
=29.38731…0.4+1
=29.38731…0.229.38731…0.4+1​
29.38731…0.4=3.86601…=29.38731…0.23.86601…+1​
Add the numbers: 3.86601…+1=4.86601…=29.38731…0.24.86601…​
29.38731…0.2=1.96621…=1.96621…4.86601…​
Divide the numbers: 1.96621…4.86601…​=2.47480…=2.47480…
=4.12468…2.47480…​
Divide the numbers: 4.12468…2.47480…​=0.6=0.6
=0.6
12575​=53​
12575​
Cancel the common factor: 25=53​
0.6=53​
True
The solutions arex=ln(0.03402…),x=ln(29.38731…)
x=ln(0.03402…),x=ln(29.38731…)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos(x)+6=cos(x)+5cos(x)= 1/3 ,(3pi)/2 <x<2pi(2.68)/(sin(126))=(1.2)/(sin(x))3csc^2(x)-5csc(x)-2=0((sin(5x)))/((-1cos(5x)))=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 75/125 =(cosh(0.2x))/(cosh(0.4x)) ?

    The general solution for 75/125 =(cosh(0.2x))/(cosh(0.4x)) is x=ln(0.03402…),x=ln(29.38731…)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024