Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,y= 1/pi arctan(x/s)+1/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=tan(22πy−π​)s
Solution steps
y=π1​arctan(sx​)+21​
Switch sidesπ1​arctan(sx​)+21​=y
Solve by substitution
π1​arctan(sx​)+21​=y
Let: arctan(sx​)=uπ1​u+21​=y
π1​u+21​=y:u=πy−2π​
π1​u+21​=y
Move 21​to the right side
π1​u+21​=y
Subtract 21​ from both sidesπ1​u+21​−21​=y−21​
Simplifyπ1​u=y−21​
π1​u=y−21​
Multiply both sides by π
π1​u=y−21​
Multiply both sides by ππ1​uπ=yπ−21​π
Simplify
π1​uπ=yπ−21​π
Simplify π1​uπ:u
π1​uπ
Multiply fractions: a⋅cb​=ca⋅b​=π1π​u
Cancel the common factor: π=u⋅1
Multiply: u⋅1=u=u
Simplify yπ−21​π:πy−2π​
yπ−21​π
21​π=2π​
21​π
Multiply fractions: a⋅cb​=ca⋅b​=21π​
Multiply: 1π=π=2π​
=πy−2π​
u=πy−2π​
u=πy−2π​
u=πy−2π​
arctan(sx​)=πy−2π​
Substitute back u=arctan(sx​)arctan(sx​)=πy−2π​
arctan(sx​)=πy−2π​
Subtract y from both sidesπ1​arctan(sx​)+21​−y=0
Simplify π1​arctan(sx​)+21​−y:2π2arctan(sx​)+π−2πy​
π1​arctan(sx​)+21​−y
π1​arctan(sx​)=πarctan(sx​)​
π1​arctan(sx​)
Multiply fractions: a⋅cb​=ca⋅b​=π1⋅arctan(sx​)​
Multiply: 1⋅arctan(sx​)=arctan(sx​)=πarctan(sx​)​
=πarctan(sx​)​+21​−y
Convert element to fraction: y=1y​=πarctan(sx​)​+21​−1y​
Least Common Multiplier of π,2,1:2π
π,2,1
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,1:2
2,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 1
Multiply each factor the greatest number of times it occurs in either 2 or 1=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear in at least one of the factored expressions=2π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2π
For πarctan(sx​)​:multiply the denominator and numerator by 2πarctan(sx​)​=π2arctan(sx​)⋅2​
For 21​:multiply the denominator and numerator by π21​=2π1π​=2ππ​
For 1y​:multiply the denominator and numerator by 2π1y​=1⋅2πy⋅2π​=2πy⋅2π​
=π2arctan(sx​)⋅2​+2ππ​−2πy⋅2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2πarctan(sx​)⋅2+π−y⋅2π​
2π2arctan(sx​)+π−2πy​=0
g(x)f(x)​=0⇒f(x)=02arctan(sx​)+π−2πy=0
Solve by substitution
2arctan(sx​)+π−2πy=0
Let: arctan(sx​)=u2u+π−2πy=0
2u+π−2πy=0:u=22πy−π​
2u+π−2πy=0
Move 2πyto the right side
2u+π−2πy=0
Add 2πy to both sides2u+π−2πy+2πy=0+2πy
Simplify2u+π=2πy
2u+π=2πy
Move πto the right side
2u+π=2πy
Subtract π from both sides2u+π−π=2πy−π
Simplify2u=2πy−π
2u=2πy−π
Divide both sides by 2
2u=2πy−π
Divide both sides by 222u​=22πy​−2π​
Simplify
22u​=22πy​−2π​
Simplify 22u​:u
22u​
Divide the numbers: 22​=1=u
Simplify 22πy​−2π​:22πy−π​
22πy​−2π​
Apply rule ca​±cb​=ca±b​=22πy−π​
u=22πy−π​
u=22πy−π​
u=22πy−π​
arctan(sx​)=22πy−π​
Substitute back u=arctan(sx​)arctan(sx​)=22πy−π​
arctan(sx​)=22πy−π​
Let: u=sx​2arctan(u)+π−2πy=0
Move 2πyto the right side
2arctan(u)+π−2πy=0
Add 2πy to both sides2arctan(u)+π−2πy+2πy=0+2πy
Simplify2arctan(u)+π=2πy
2arctan(u)+π=2πy
Move πto the right side
2arctan(u)+π=2πy
Subtract π from both sides2arctan(u)+π−π=2πy−π
Simplify2arctan(u)=2πy−π
2arctan(u)=2πy−π
Divide both sides by 2
2arctan(u)=2πy−π
Divide both sides by 222arctan(u)​=22πy​−2π​
Simplify
22arctan(u)​=22πy​−2π​
Simplify 22arctan(u)​:arctan(u)
22arctan(u)​
Divide the numbers: 22​=1=arctan(u)
Simplify 22πy​−2π​:22πy−π​
22πy​−2π​
Apply rule ca​±cb​=ca±b​=22πy−π​
arctan(u)=22πy−π​
arctan(u)=22πy−π​
arctan(u)=22πy−π​
Apply trig inverse properties
arctan(u)=22πy−π​
arctan(x)=a⇒x=tan(a)u=tan(22πy−π​)
u=tan(22πy−π​)
Substitute back u=sx​
sx​=tan(22πy−π​):x=tan(22πy−π​)s;s=0
sx​=tan(22πy−π​)
Multiply both sides by s
sx​=tan(22πy−π​)
Multiply both sides by ssxs​=tan(22πy−π​)s;s=0
Simplifyx=tan(22πy−π​)s;s=0
x=tan(22πy−π​)s;s=0
x=tan(22πy−π​)s

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

8sin(2x)=16cos(x)3arccos(x)=pi3sin(2x)-2sin(2x)=02cos^2(a)=1+cos(120)cos(x)=(11)/(sqrt(17*38))

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor x,y= 1/pi arctan(x/s)+1/2 ?

    The general solution for solvefor x,y= 1/pi arctan(x/s)+1/2 is x=tan((2piy-pi)/2)s
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024