Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(θ)-3cot(θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(θ)−3cot(θ)=0

Solution

θ=0.96453…+πn
+1
Degrees
θ=55.26405…∘+180∘n
Solution steps
tan2(θ)−3cot(θ)=0
Rewrite using trig identities
tan2(θ)−3cot(θ)
Use the basic trigonometric identity: tan(x)=cot(x)1​=(cot(θ)1​)2−3cot(θ)
(cot(θ)1​)2=cot2(θ)1​
(cot(θ)1​)2
Apply exponent rule: (ba​)c=bcac​=cot2(θ)12​
Apply rule 1a=112=1=cot2(θ)1​
=cot2(θ)1​−3cot(θ)
cot2(θ)1​−3cot(θ)=0
Solve by substitution
cot2(θ)1​−3cot(θ)=0
Let: cot(θ)=uu21​−3u=0
u21​−3u=0
Multiply both sides by u2
u21​−3u=0
Multiply both sides by u2u21​u2−3uu2=0⋅u2
Simplify
u21​u2−3uu2=0⋅u2
Simplify u21​u2:1
u21​u2
Multiply fractions: a⋅cb​=ca⋅b​=u21⋅u2​
Cancel the common factor: u2=1
Simplify −3uu2:−3u3
−3uu2
Apply exponent rule: ab⋅ac=ab+cuu2=u1+2=−3u1+2
Add the numbers: 1+2=3=−3u3
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
1−3u3=0
1−3u3=0
1−3u3=0
Solve
1−3u3=0
Move 1to the right side
1−3u3=0
Subtract 1 from both sides1−3u3−1=0−1
Simplify−3u3=−1
−3u3=−1
Divide both sides by −3
−3u3=−1
Divide both sides by −3−3−3u3​=−3−1​
Simplifyu3=31​
u3=31​
For x3=f(a) the solutions are
Simplify
Multiply fractions: a⋅cb​=ca⋅b​
Apply radical rule: assuming a≥0,b≥0
Apply rule
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
1⋅(−1+3​i)=−1+3​i
1⋅(−1+3​i)
Multiply: 1⋅(−1+3​i)=(−1+3​i)=(−1+3​i)
Remove parentheses: (−a)=−a=−1+3​i
Apply the fraction rule: acb​​=c⋅ab​
Rationalize
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=332​+31​⋅2
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅2
Multiply the numbers: 3⋅2=6=6
=6332​(−1+3​i)​
=6332​(−1+3​i)​
Rewrite 6332​(−1+3​i)​ in standard complex form:
6332​(−1+3​i)​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅3332​(−1+3​i)​
Cancel 2⋅3332​(−1+3​i)​:2⋅331​−1+3​i​
2⋅3332​(−1+3​i)​
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​=2⋅3−32​+1−1+3​i​
Subtract the numbers: 1−32​=31​=2⋅331​−1+3​i​
=2⋅331​−1+3​i​
Apply radical rule:
Apply the fraction rule: ca±b​=ca​±cb​
Cancel
Cancel
Apply radical rule: =2⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=2321​−31​i​
Subtract the numbers: 21​−31​=61​=2361​i​
Apply radical rule:
Multiply by the conjugate 332​332​​
1⋅332​=332​
Apply exponent rule: ab⋅ac=ab+c=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
=−6332​​
Simplify
Multiply fractions: a⋅cb​=ca⋅b​
Apply radical rule: assuming a≥0,b≥0
Apply rule
Multiply
Multiply fractions: a⋅cb​=ca⋅b​
1⋅(−1−3​i)=−1−3​i
1⋅(−1−3​i)
Multiply: 1⋅(−1−3​i)=(−1−3​i)=(−1−3​i)
Remove parentheses: (−a)=−a=−1−3​i
Apply the fraction rule: acb​​=c⋅ab​
Rationalize
Multiply by the conjugate 332​332​​
Apply exponent rule: ab⋅ac=ab+c=332​+31​⋅2
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=3⋅2
Multiply the numbers: 3⋅2=6=6
=6332​(−1−3​i)​
=6332​(−1−3​i)​
Rewrite 6332​(−1−3​i)​ in standard complex form:
6332​(−1−3​i)​
Factor 6:2⋅3
Factor 6=2⋅3
=2⋅3332​(−1−3​i)​
Cancel 2⋅3332​(−1−3​i)​:2⋅331​−1−3​i​
2⋅3332​(−1−3​i)​
Apply exponent rule: xbxa​=xb−a1​3332​​=31−32​1​=2⋅3−32​+1−1−3​i​
Subtract the numbers: 1−32​=31​=2⋅331​−1−3​i​
=2⋅331​−1−3​i​
Apply radical rule:
Apply the fraction rule: ca±b​=ca​±cb​
Cancel
Cancel
Apply radical rule: =2⋅331​321​i​
Apply exponent rule: xbxa​=xa−b331​321​​=321​−31​=2321​−31​i​
Subtract the numbers: 21​−31​=61​=2361​i​
Apply radical rule:
Multiply by the conjugate 332​332​​
1⋅332​=332​
Apply exponent rule: ab⋅ac=ab+c=2⋅332​+31​
332​+31​=3
332​+31​
Combine the fractions 32​+31​:1
Apply rule ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=31
Apply rule a1=a=3
=2⋅3
Multiply the numbers: 2⋅3=6=6
=−6332​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u21​−3u and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
Substitute back u=cot(θ)
Apply trig inverse properties
General solutions for cot(x)=a⇒x=arccot(a)+πn
No Solution
NoSolution
No Solution
NoSolution
Combine all the solutions
Show solutions in decimal formθ=0.96453…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor a,cos(ax)+(b/x)sin(ax)=0cos^4(a)+cos^2(a)+sin^2(a)+sin^2(a)=1cos^3(x)-2sin(x)-0.7=0solvefor y=cos(x),xtan(θ)= 5/(5sqrt(3))

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^2(θ)-3cot(θ)=0 ?

    The general solution for tan^2(θ)-3cot(θ)=0 is θ=0.96453…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024