Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos^3(x)-7cos(x)-3=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos3(x)−7cos(x)−3=0

Solution

x=π+2πn,x=32π​+2πn,x=34π​+2πn
+1
Degrees
x=180∘+360∘n,x=120∘+360∘n,x=240∘+360∘n
Solution steps
4cos3(x)−7cos(x)−3=0
Solve by substitution
4cos3(x)−7cos(x)−3=0
Let: cos(x)=u4u3−7u−3=0
4u3−7u−3=0:u=−1,u=−21​,u=23​
4u3−7u−3=0
Factor 4u3−7u−3:(u+1)(2u+1)(2u−3)
4u3−7u−3
Use the rational root theorem
a0​=3,an​=4
The dividers of a0​:1,3,The dividers of an​:1,2,4
Therefore, check the following rational numbers:±1,2,41,3​
−11​ is a root of the expression, so factor out u+1
=(u+1)u+14u3−7u−3​
u+14u3−7u−3​=4u2−4u−3
u+14u3−7u−3​
Divide u+14u3−7u−3​:u+14u3−7u−3​=4u2+u+1−4u2−7u−3​
Divide the leading coefficients of the numerator 4u3−7u−3
and the divisor u+1:u4u3​=4u2
Quotient=4u2
Multiply u+1 by 4u2:4u3+4u2Subtract 4u3+4u2 from 4u3−7u−3 to get new remainderRemainder=−4u2−7u−3
Thereforeu+14u3−7u−3​=4u2+u+1−4u2−7u−3​
=4u2+u+1−4u2−7u−3​
Divide u+1−4u2−7u−3​:u+1−4u2−7u−3​=−4u+u+1−3u−3​
Divide the leading coefficients of the numerator −4u2−7u−3
and the divisor u+1:u−4u2​=−4u
Quotient=−4u
Multiply u+1 by −4u:−4u2−4uSubtract −4u2−4u from −4u2−7u−3 to get new remainderRemainder=−3u−3
Thereforeu+1−4u2−7u−3​=−4u+u+1−3u−3​
=4u2−4u+u+1−3u−3​
Divide u+1−3u−3​:u+1−3u−3​=−3
Divide the leading coefficients of the numerator −3u−3
and the divisor u+1:u−3u​=−3
Quotient=−3
Multiply u+1 by −3:−3u−3Subtract −3u−3 from −3u−3 to get new remainderRemainder=0
Thereforeu+1−3u−3​=−3
=4u2−4u−3
=4u2−4u−3
Factor 4u2−4u−3:(2u+1)(2u−3)
4u2−4u−3
Break the expression into groups
4u2−4u−3
Definition
Factors of 12:1,2,3,4,6,12
12
Divisors (Factors)
Find the Prime factors of 12:2,2,3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply the prime factors of 12:4,6
2⋅2=42⋅3=6
4,6
4,6
Add the prime factors: 2,3
Add 1 and the number 12 itself1,12
The factors of 121,2,3,4,6,12
Negative factors of 12:−1,−2,−3,−4,−6,−12
Multiply the factors by −1 to get the negative factors−1,−2,−3,−4,−6,−12
For every two factors such that u∗v=−12,check if u+v=−4
Check u=1,v=−12:u∗v=−12,u+v=−11⇒FalseCheck u=2,v=−6:u∗v=−12,u+v=−4⇒True
u=2,v=−6
Group into (ax2+ux)+(vx+c)(4u2+2u)+(−6u−3)
=(4u2+2u)+(−6u−3)
Factor out 2ufrom 4u2+2u:2u(2u+1)
4u2+2u
Apply exponent rule: ab+c=abacu2=uu=4uu+2u
Rewrite 4 as 2⋅2=2⋅2uu+2u
Factor out common term 2u=2u(2u+1)
Factor out −3from −6u−3:−3(2u+1)
−6u−3
Rewrite 6 as 3⋅2=−3⋅2u−3
Factor out common term −3=−3(2u+1)
=2u(2u+1)−3(2u+1)
Factor out common term 2u+1=(2u+1)(2u−3)
=(u+1)(2u+1)(2u−3)
(u+1)(2u+1)(2u−3)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0or2u+1=0or2u−3=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve 2u+1=0:u=−21​
2u+1=0
Move 1to the right side
2u+1=0
Subtract 1 from both sides2u+1−1=0−1
Simplify2u=−1
2u=−1
Divide both sides by 2
2u=−1
Divide both sides by 222u​=2−1​
Simplifyu=−21​
u=−21​
Solve 2u−3=0:u=23​
2u−3=0
Move 3to the right side
2u−3=0
Add 3 to both sides2u−3+3=0+3
Simplify2u=3
2u=3
Divide both sides by 2
2u=3
Divide both sides by 222u​=23​
Simplifyu=23​
u=23​
The solutions areu=−1,u=−21​,u=23​
Substitute back u=cos(x)cos(x)=−1,cos(x)=−21​,cos(x)=23​
cos(x)=−1,cos(x)=−21​,cos(x)=23​
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=−21​:x=32π​+2πn,x=34π​+2πn
cos(x)=−21​
General solutions for cos(x)=−21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=32π​+2πn,x=34π​+2πn
x=32π​+2πn,x=34π​+2πn
cos(x)=23​:No Solution
cos(x)=23​
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=π+2πn,x=32π​+2πn,x=34π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(θ))/(1.3)=(sin(125))/(2.8519)8sin(θ)cos(θ)tan(θ)=csc(θ)(cot(θ))/(sec(θ))=sin(θ)16sin(2x)=0cos(2α)+sin(α)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 4cos^3(x)-7cos(x)-3=0 ?

    The general solution for 4cos^3(x)-7cos(x)-3=0 is x=pi+2pin,x=(2pi)/3+2pin,x=(4pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024