Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

8sin(θ)cos(θ)tan(θ)=csc(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8sin(θ)cos(θ)tan(θ)=csc(θ)

Solution

θ=6π​+2πn,θ=65π​+2πn
+1
Degrees
θ=30∘+360∘n,θ=150∘+360∘n
Solution steps
8sin(θ)cos(θ)tan(θ)=csc(θ)
Subtract csc(θ) from both sides8sin(θ)cos(θ)tan(θ)−csc(θ)=0
Express with sin, cos
−csc(θ)+8cos(θ)sin(θ)tan(θ)
Use the basic trigonometric identity: csc(x)=sin(x)1​=−sin(θ)1​+8cos(θ)sin(θ)tan(θ)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−sin(θ)1​+8cos(θ)sin(θ)cos(θ)sin(θ)​
Simplify −sin(θ)1​+8cos(θ)sin(θ)cos(θ)sin(θ)​:sin(θ)−1+8sin3(θ)​
−sin(θ)1​+8cos(θ)sin(θ)cos(θ)sin(θ)​
8cos(θ)sin(θ)cos(θ)sin(θ)​=8sin2(θ)
8cos(θ)sin(θ)cos(θ)sin(θ)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)sin(θ)⋅8cos(θ)sin(θ)​
Cancel the common factor: cos(θ)=sin(θ)⋅8sin(θ)
Apply exponent rule: ab⋅ac=ab+csin(θ)sin(θ)=sin1+1(θ)=8sin1+1(θ)
Add the numbers: 1+1=2=8sin2(θ)
=−sin(θ)1​+8sin2(θ)
Convert element to fraction: 8sin2(θ)=sin(θ)8sin2(θ)sin(θ)​=−sin(θ)1​+sin(θ)8sin2(θ)sin(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(θ)−1+8sin2(θ)sin(θ)​
−1+8sin2(θ)sin(θ)=−1+8sin3(θ)
−1+8sin2(θ)sin(θ)
8sin2(θ)sin(θ)=8sin3(θ)
8sin2(θ)sin(θ)
Apply exponent rule: ab⋅ac=ab+csin2(θ)sin(θ)=sin2+1(θ)=8sin2+1(θ)
Add the numbers: 2+1=3=8sin3(θ)
=−1+8sin3(θ)
=sin(θ)−1+8sin3(θ)​
=sin(θ)−1+8sin3(θ)​
sin(θ)−1+8sin3(θ)​=0
g(x)f(x)​=0⇒f(x)=0−1+8sin3(θ)=0
Solve by substitution
−1+8sin3(θ)=0
Let: sin(θ)=u−1+8u3=0
−1+8u3=0:u=21​,u=−41​+i43​​,u=−41​−i43​​
−1+8u3=0
Move 1to the right side
−1+8u3=0
Add 1 to both sides−1+8u3+1=0+1
Simplify8u3=1
8u3=1
Divide both sides by 8
8u3=1
Divide both sides by 888u3​=81​
Simplifyu3=81​
u3=81​
For x3=f(a) the solutions are
Apply radical rule: assuming a≥0,b≥0
Factor the number: 8=23
Apply radical rule: =2
Apply rule =21​
Simplify
Apply radical rule: assuming a≥0,b≥0
Factor the number: 8=23
Apply radical rule: =2
Apply rule =21​
=21​⋅2−1+3​i​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅(−1+3​i)​
1⋅(−1+3​i)=−1+3​i
1⋅(−1+3​i)
Multiply: 1⋅(−1+3​i)=(−1+3​i)=(−1+3​i)
Remove parentheses: (−a)=−a=−1+3​i
=2⋅2−1+3​i​
Multiply the numbers: 2⋅2=4=4−1+3​i​
Rewrite 4−1+3​i​ in standard complex form: −41​+43​​i
4−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​4−1+3​i​=−41​+43​i​=−41​+43​i​
=−41​+43​​i
Simplify
Apply radical rule: assuming a≥0,b≥0
Factor the number: 8=23
Apply radical rule: =2
Apply rule =21​
=21​⋅2−1−3​i​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅(−1−3​i)​
1⋅(−1−3​i)=−1−3​i
1⋅(−1−3​i)
Multiply: 1⋅(−1−3​i)=(−1−3​i)=(−1−3​i)
Remove parentheses: (−a)=−a=−1−3​i
=2⋅2−1−3​i​
Multiply the numbers: 2⋅2=4=4−1−3​i​
Rewrite 4−1−3​i​ in standard complex form: −41​−43​​i
4−1−3​i​
Apply the fraction rule: ca±b​=ca​±cb​4−1−3​i​=−41​−43​i​=−41​−43​i​
=−41​−43​​i
u=21​,u=−41​+i43​​,u=−41​−i43​​
Substitute back u=sin(θ)sin(θ)=21​,sin(θ)=−41​+i43​​,sin(θ)=−41​−i43​​
sin(θ)=21​,sin(θ)=−41​+i43​​,sin(θ)=−41​−i43​​
sin(θ)=21​:θ=6π​+2πn,θ=65π​+2πn
sin(θ)=21​
General solutions for sin(θ)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=6π​+2πn,θ=65π​+2πn
θ=6π​+2πn,θ=65π​+2πn
sin(θ)=−41​+i43​​:No Solution
sin(θ)=−41​+i43​​
NoSolution
sin(θ)=−41​−i43​​:No Solution
sin(θ)=−41​−i43​​
NoSolution
Combine all the solutionsθ=6π​+2πn,θ=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(cot(θ))/(sec(θ))=sin(θ)16sin(2x)=0cos(2α)+sin(α)=0sin(90-x)= 4/5sin(x)=sin(80)

Frequently Asked Questions (FAQ)

  • What is the general solution for 8sin(θ)cos(θ)tan(θ)=csc(θ) ?

    The general solution for 8sin(θ)cos(θ)tan(θ)=csc(θ) is θ= pi/6+2pin,θ=(5pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024