Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cot(θ))/(sec(θ))=sin(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(θ)cot(θ)​=sin(θ)

Solution

θ=4π​+πn,θ=43π​+πn
+1
Degrees
θ=45∘+180∘n,θ=135∘+180∘n
Solution steps
sec(θ)cot(θ)​=sin(θ)
Subtract sin(θ) from both sidessec(θ)cot(θ)​−sin(θ)=0
Simplify sec(θ)cot(θ)​−sin(θ):sec(θ)cot(θ)−sin(θ)sec(θ)​
sec(θ)cot(θ)​−sin(θ)
Convert element to fraction: sin(θ)=sec(θ)sin(θ)sec(θ)​=sec(θ)cot(θ)​−sec(θ)sin(θ)sec(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sec(θ)cot(θ)−sin(θ)sec(θ)​
sec(θ)cot(θ)−sin(θ)sec(θ)​=0
g(x)f(x)​=0⇒f(x)=0cot(θ)−sin(θ)sec(θ)=0
Express with sin, cos
cot(θ)−sec(θ)sin(θ)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(θ)cos(θ)​−sec(θ)sin(θ)
Use the basic trigonometric identity: sec(x)=cos(x)1​=sin(θ)cos(θ)​−cos(θ)1​sin(θ)
Simplify sin(θ)cos(θ)​−cos(θ)1​sin(θ):sin(θ)cos(θ)cos2(θ)−sin2(θ)​
sin(θ)cos(θ)​−cos(θ)1​sin(θ)
cos(θ)1​sin(θ)=cos(θ)sin(θ)​
cos(θ)1​sin(θ)
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)1⋅sin(θ)​
Multiply: 1⋅sin(θ)=sin(θ)=cos(θ)sin(θ)​
=sin(θ)cos(θ)​−cos(θ)sin(θ)​
Least Common Multiplier of sin(θ),cos(θ):sin(θ)cos(θ)
sin(θ),cos(θ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(θ) or cos(θ)=sin(θ)cos(θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(θ)cos(θ)
For sin(θ)cos(θ)​:multiply the denominator and numerator by cos(θ)sin(θ)cos(θ)​=sin(θ)cos(θ)cos(θ)cos(θ)​=sin(θ)cos(θ)cos2(θ)​
For cos(θ)sin(θ)​:multiply the denominator and numerator by sin(θ)cos(θ)sin(θ)​=cos(θ)sin(θ)sin(θ)sin(θ)​=sin(θ)cos(θ)sin2(θ)​
=sin(θ)cos(θ)cos2(θ)​−sin(θ)cos(θ)sin2(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(θ)cos(θ)cos2(θ)−sin2(θ)​
=sin(θ)cos(θ)cos2(θ)−sin2(θ)​
cos(θ)sin(θ)cos2(θ)−sin2(θ)​=0
g(x)f(x)​=0⇒f(x)=0cos2(θ)−sin2(θ)=0
Rewrite using trig identities
cos2(θ)−sin2(θ)
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)=cos(2θ)
cos(2θ)=0
General solutions for cos(2θ)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2θ=2π​+2πn,2θ=23π​+2πn
2θ=2π​+2πn,2θ=23π​+2πn
Solve 2θ=2π​+2πn:θ=4π​+πn
2θ=2π​+2πn
Divide both sides by 2
2θ=2π​+2πn
Divide both sides by 222θ​=22π​​+22πn​
Simplify
22θ​=22π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
θ=4π​+πn
θ=4π​+πn
θ=4π​+πn
Solve 2θ=23π​+2πn:θ=43π​+πn
2θ=23π​+2πn
Divide both sides by 2
2θ=23π​+2πn
Divide both sides by 222θ​=223π​​+22πn​
Simplify
22θ​=223π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 223π​​+22πn​:43π​+πn
223π​​+22πn​
223π​​=43π​
223π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π​
Multiply the numbers: 2⋅2=4=43π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=43π​+πn
θ=43π​+πn
θ=43π​+πn
θ=43π​+πn
θ=4π​+πn,θ=43π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

16sin(2x)=0cos(2α)+sin(α)=0sin(90-x)= 4/5sin(x)=sin(80)tan(A)=2.0503

Frequently Asked Questions (FAQ)

  • What is the general solution for (cot(θ))/(sec(θ))=sin(θ) ?

    The general solution for (cot(θ))/(sec(θ))=sin(θ) is θ= pi/4+pin,θ=(3pi)/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024