Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2+2cos(x)= 2/(1+cos(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2+2cos(x)=1+cos(x)2​

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
2+2cos(x)=1+cos(x)2​
Solve by substitution
2+2cos(x)=1+cos(x)2​
Let: cos(x)=u2+2u=1+u2​
2+2u=1+u2​:u=0,u=−2
2+2u=1+u2​
Multiply both sides by 1+u
2+2u=1+u2​
Multiply both sides by 1+u2(1+u)+2u(1+u)=1+u2​(1+u)
Simplify2(1+u)+2u(1+u)=2
2(1+u)+2u(1+u)=2
Solve 2(1+u)+2u(1+u)=2:u=0,u=−2
2(1+u)+2u(1+u)=2
Expand 2(1+u)+2u(1+u):2+4u+2u2
2(1+u)+2u(1+u)
Expand 2(1+u):2+2u
2(1+u)
Apply the distributive law: a(b+c)=ab+aca=2,b=1,c=u=2⋅1+2u
Multiply the numbers: 2⋅1=2=2+2u
=2+2u+2u(1+u)
Expand 2u(1+u):2u+2u2
2u(1+u)
Apply the distributive law: a(b+c)=ab+aca=2u,b=1,c=u=2u⋅1+2uu
=2⋅1⋅u+2uu
Simplify 2⋅1⋅u+2uu:2u+2u2
2⋅1⋅u+2uu
2⋅1⋅u=2u
2⋅1⋅u
Multiply the numbers: 2⋅1=2=2u
2uu=2u2
2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2u1+1
Add the numbers: 1+1=2=2u2
=2u+2u2
=2u+2u2
=2+2u+2u+2u2
Add similar elements: 2u+2u=4u=2+4u+2u2
2+4u+2u2=2
Move 2to the left side
2+4u+2u2=2
Subtract 2 from both sides2+4u+2u2−2=2−2
Simplify2u2+4u=0
2u2+4u=0
Solve with the quadratic formula
2u2+4u=0
Quadratic Equation Formula:
For a=2,b=4,c=0u1,2​=2⋅2−4±42−4⋅2⋅0​​
u1,2​=2⋅2−4±42−4⋅2⋅0​​
42−4⋅2⋅0​=4
42−4⋅2⋅0​
Apply rule 0⋅a=0=42−0​
42−0=42=42​
Apply radical rule: nan​=a, assuming a≥0=4
u1,2​=2⋅2−4±4​
Separate the solutionsu1​=2⋅2−4+4​,u2​=2⋅2−4−4​
u=2⋅2−4+4​:0
2⋅2−4+4​
Add/Subtract the numbers: −4+4=0=2⋅20​
Multiply the numbers: 2⋅2=4=40​
Apply rule a0​=0,a=0=0
u=2⋅2−4−4​:−2
2⋅2−4−4​
Subtract the numbers: −4−4=−8=2⋅2−8​
Multiply the numbers: 2⋅2=4=4−8​
Apply the fraction rule: b−a​=−ba​=−48​
Divide the numbers: 48​=2=−2
The solutions to the quadratic equation are:u=0,u=−2
u=0,u=−2
Verify Solutions
Find undefined (singularity) points:u=−1
Take the denominator(s) of 1+u2​ and compare to zero
Solve 1+u=0:u=−1
1+u=0
Move 1to the right side
1+u=0
Subtract 1 from both sides1+u−1=0−1
Simplifyu=−1
u=−1
The following points are undefinedu=−1
Combine undefined points with solutions:
u=0,u=−2
Substitute back u=cos(x)cos(x)=0,cos(x)=−2
cos(x)=0,cos(x)=−2
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−2:No Solution
cos(x)=−2
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

ksin(x)-c=0cos(x)=sin(x-pi/2)5cos(x)+2=0,0<= x<= 2pi2sin(x)cos(x)-sin(2x)cos(2x)=0cos(x)= 21/29

Frequently Asked Questions (FAQ)

  • What is the general solution for 2+2cos(x)= 2/(1+cos(x)) ?

    The general solution for 2+2cos(x)= 2/(1+cos(x)) is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024