Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6=50sin(x)-15cos(x),0<x< pi/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6=50sin(x)−15cos(x),0<x<2π​

Solution

x=0.40665…
+1
Degrees
x=23.29935…∘
Solution steps
6=50sin(x)−15cos(x),0<x<2π​
Add 15cos(x) to both sides50sin(x)=6+15cos(x)
Square both sides(50sin(x))2=(6+15cos(x))2
Subtract (6+15cos(x))2 from both sides2500sin2(x)−36−180cos(x)−225cos2(x)=0
Rewrite using trig identities
−36−180cos(x)−225cos2(x)+2500sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−36−180cos(x)−225cos2(x)+2500(1−cos2(x))
Simplify −36−180cos(x)−225cos2(x)+2500(1−cos2(x)):−2725cos2(x)−180cos(x)+2464
−36−180cos(x)−225cos2(x)+2500(1−cos2(x))
Expand 2500(1−cos2(x)):2500−2500cos2(x)
2500(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=2500,b=1,c=cos2(x)=2500⋅1−2500cos2(x)
Multiply the numbers: 2500⋅1=2500=2500−2500cos2(x)
=−36−180cos(x)−225cos2(x)+2500−2500cos2(x)
Simplify −36−180cos(x)−225cos2(x)+2500−2500cos2(x):−2725cos2(x)−180cos(x)+2464
−36−180cos(x)−225cos2(x)+2500−2500cos2(x)
Group like terms=−180cos(x)−225cos2(x)−2500cos2(x)−36+2500
Add similar elements: −225cos2(x)−2500cos2(x)=−2725cos2(x)=−180cos(x)−2725cos2(x)−36+2500
Add/Subtract the numbers: −36+2500=2464=−2725cos2(x)−180cos(x)+2464
=−2725cos2(x)−180cos(x)+2464
=−2725cos2(x)−180cos(x)+2464
2464−180cos(x)−2725cos2(x)=0
Solve by substitution
2464−180cos(x)−2725cos2(x)=0
Let: cos(x)=u2464−180u−2725u2=0
2464−180u−2725u2=0:u=−5452(9+52689​)​,u=5452(52689​−9)​
2464−180u−2725u2=0
Write in the standard form ax2+bx+c=0−2725u2−180u+2464=0
Solve with the quadratic formula
−2725u2−180u+2464=0
Quadratic Equation Formula:
For a=−2725,b=−180,c=2464u1,2​=2(−2725)−(−180)±(−180)2−4(−2725)⋅2464​​
u1,2​=2(−2725)−(−180)±(−180)2−4(−2725)⋅2464​​
(−180)2−4(−2725)⋅2464​=1002689​
(−180)2−4(−2725)⋅2464​
Apply rule −(−a)=a=(−180)2+4⋅2725⋅2464​
Apply exponent rule: (−a)n=an,if n is even(−180)2=1802=1802+4⋅2725⋅2464​
Multiply the numbers: 4⋅2725⋅2464=26857600=1802+26857600​
1802=32400=32400+26857600​
Add the numbers: 32400+26857600=26890000=26890000​
Prime factorization of 26890000:24⋅54⋅2689
26890000
=24⋅54⋅2689​
Apply radical rule: =2689​24​54​
Apply radical rule: 24​=224​=22=222689​54​
Apply radical rule: 54​=524​=52=22⋅522689​
Refine=1002689​
u1,2​=2(−2725)−(−180)±1002689​​
Separate the solutionsu1​=2(−2725)−(−180)+1002689​​,u2​=2(−2725)−(−180)−1002689​​
u=2(−2725)−(−180)+1002689​​:−5452(9+52689​)​
2(−2725)−(−180)+1002689​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2725180+1002689​​
Multiply the numbers: 2⋅2725=5450=−5450180+1002689​​
Apply the fraction rule: −ba​=−ba​=−5450180+1002689​​
Cancel 5450180+1002689​​:5452(9+52689​)​
5450180+1002689​​
Factor 180+1002689​:20(9+52689​)
180+1002689​
Rewrite as=20⋅9+20⋅52689​
Factor out common term 20=20(9+52689​)
=545020(9+52689​)​
Cancel the common factor: 10=5452(9+52689​)​
=−5452(9+52689​)​
u=2(−2725)−(−180)−1002689​​:5452(52689​−9)​
2(−2725)−(−180)−1002689​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅2725180−1002689​​
Multiply the numbers: 2⋅2725=5450=−5450180−1002689​​
Apply the fraction rule: −b−a​=ba​180−1002689​=−(1002689​−180)=54501002689​−180​
Factor 1002689​−180:20(52689​−9)
1002689​−180
Rewrite as=20⋅52689​−20⋅9
Factor out common term 20=20(52689​−9)
=545020(52689​−9)​
Cancel the common factor: 10=5452(52689​−9)​
The solutions to the quadratic equation are:u=−5452(9+52689​)​,u=5452(52689​−9)​
Substitute back u=cos(x)cos(x)=−5452(9+52689​)​,cos(x)=5452(52689​−9)​
cos(x)=−5452(9+52689​)​,cos(x)=5452(52689​−9)​
cos(x)=−5452(9+52689​)​,0<x<2π​:No Solution
cos(x)=−5452(9+52689​)​,0<x<2π​
Apply trig inverse properties
cos(x)=−5452(9+52689​)​
General solutions for cos(x)=−5452(9+52689​)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−5452(9+52689​)​)+2πn,x=−arccos(−5452(9+52689​)​)+2πn
x=arccos(−5452(9+52689​)​)+2πn,x=−arccos(−5452(9+52689​)​)+2πn
Solutions for the range 0<x<2π​NoSolution
cos(x)=5452(52689​−9)​,0<x<2π​:x=arccos(5452(52689​−9)​)
cos(x)=5452(52689​−9)​,0<x<2π​
Apply trig inverse properties
cos(x)=5452(52689​−9)​
General solutions for cos(x)=5452(52689​−9)​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(5452(52689​−9)​)+2πn,x=2π−arccos(5452(52689​−9)​)+2πn
x=arccos(5452(52689​−9)​)+2πn,x=2π−arccos(5452(52689​−9)​)+2πn
Solutions for the range 0<x<2π​x=arccos(5452(52689​−9)​)
Combine all the solutionsx=arccos(5452(52689​−9)​)
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 50sin(x)−15cos(x)=6
Remove the ones that don't agree with the equation.
Check the solution arccos(5452(52689​−9)​):True
arccos(5452(52689​−9)​)
Plug in n=1arccos(5452(52689​−9)​)
For 50sin(x)−15cos(x)=6plug inx=arccos(5452(52689​−9)​)50sin(arccos(5452(52689​−9)​))−15cos(arccos(5452(52689​−9)​))=6
Refine6=6
⇒True
x=arccos(5452(52689​−9)​)
Show solutions in decimal formx=0.40665…

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor y,x=3sin(y)sin(x)-0.75=02cos^2(x)+cos(x)-6=0tan(2x)+sec(2x)=4sqrt(3)tan(θ-20)=tan^2(45)

Frequently Asked Questions (FAQ)

  • What is the general solution for 6=50sin(x)-15cos(x),0<x< pi/2 ?

    The general solution for 6=50sin(x)-15cos(x),0<x< pi/2 is x=0.40665…
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024