Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cos(x))/(sin(2x))= 5/7

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)cos(x)​=75​

Solution

x=0.77539…+2πn,x=π−0.77539…+2πn
+1
Degrees
x=44.42700…∘+360∘n,x=135.57299…∘+360∘n
Solution steps
sin(2x)cos(x)​=75​
Subtract 75​ from both sidessin(2x)cos(x)​−75​=0
Simplify sin(2x)cos(x)​−75​:7sin(2x)7cos(x)−5sin(2x)​
sin(2x)cos(x)​−75​
Least Common Multiplier of sin(2x),7:7sin(2x)
sin(2x),7
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(2x) or 7=7sin(2x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 7sin(2x)
For sin(2x)cos(x)​:multiply the denominator and numerator by 7sin(2x)cos(x)​=sin(2x)⋅7cos(x)⋅7​
For 75​:multiply the denominator and numerator by sin(2x)75​=7sin(2x)5sin(2x)​
=sin(2x)⋅7cos(x)⋅7​−7sin(2x)5sin(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=7sin(2x)cos(x)⋅7−5sin(2x)​
7sin(2x)7cos(x)−5sin(2x)​=0
g(x)f(x)​=0⇒f(x)=07cos(x)−5sin(2x)=0
Rewrite using trig identities
−5sin(2x)+7cos(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=−5⋅2sin(x)cos(x)+7cos(x)
Simplify=−10sin(x)cos(x)+7cos(x)
7cos(x)−10cos(x)sin(x)=0
Factor 7cos(x)−10cos(x)sin(x):−cos(x)(10sin(x)−7)
7cos(x)−10cos(x)sin(x)
Factor out common term −cos(x)=−cos(x)(−7+10sin(x))
−cos(x)(10sin(x)−7)=0
Solving each part separatelycos(x)=0or10sin(x)−7=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
10sin(x)−7=0:x=arcsin(107​)+2πn,x=π−arcsin(107​)+2πn
10sin(x)−7=0
Move 7to the right side
10sin(x)−7=0
Add 7 to both sides10sin(x)−7+7=0+7
Simplify10sin(x)=7
10sin(x)=7
Divide both sides by 10
10sin(x)=7
Divide both sides by 101010sin(x)​=107​
Simplifysin(x)=107​
sin(x)=107​
Apply trig inverse properties
sin(x)=107​
General solutions for sin(x)=107​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(107​)+2πn,x=π−arcsin(107​)+2πn
x=arcsin(107​)+2πn,x=π−arcsin(107​)+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=arcsin(107​)+2πn,x=π−arcsin(107​)+2πn
Since the equation is undefined for:2π​+2πn,23π​+2πnx=arcsin(107​)+2πn,x=π−arcsin(107​)+2πn
Show solutions in decimal formx=0.77539…+2πn,x=π−0.77539…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)=(6*0.809)/(15)arctan(x)=26tan(θ)=-8/6cos^2(θ)-3/2 = 5/2 cos(θ)tan(x)=-1/8

Frequently Asked Questions (FAQ)

  • What is the general solution for (cos(x))/(sin(2x))= 5/7 ?

    The general solution for (cos(x))/(sin(2x))= 5/7 is x=0.77539…+2pin,x=pi-0.77539…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024