解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
AI Chat
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 三角函数 >

sin(3x)=sin^2(x)

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

sin(3x)=sin2(x)

解答

x=2πn,x=π+2πn,x=0.84806…+2πn,x=π−0.84806…+2πn,x=23π​+2πn
+1
度数
x=0∘+360∘n,x=180∘+360∘n,x=48.59037…∘+360∘n,x=131.40962…∘+360∘n,x=270∘+360∘n
求解步骤
sin(3x)=sin2(x)
两边减去 sin2(x)sin(3x)−sin2(x)=0
使用三角恒等式改写
sin(3x)−sin2(x)
sin(3x)=3sin(x)−4sin3(x)
sin(3x)
使用三角恒等式改写
sin(3x)
改写为=sin(2x+x)
使用角和恒等式: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
使用倍角公式: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
化简 cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
数字相加:1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
使用倍角公式: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
乘开 (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
乘开 sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
使用分配律: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
化简 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
乘以:1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
使用指数法则: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
数字相加:2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
乘开 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
使用分配律: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
化简 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
数字相乘:2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
使用指数法则: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
数字相加:2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
化简 sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
对同类项分组=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
同类项相加:−2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
同类项相加:sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=3sin(x)−4sin3(x)−sin2(x)
−sin2(x)+3sin(x)−4sin3(x)=0
用替代法求解
−sin2(x)+3sin(x)−4sin3(x)=0
令:sin(x)=u−u2+3u−4u3=0
−u2+3u−4u3=0:u=0,u=43​,u=−1
−u2+3u−4u3=0
因式分解 −u2+3u−4u3:−u(4u−3)(u+1)
−u2+3u−4u3
因式分解出通项 −u:−u(4u2+u−3)
−4u3−u2+3u
使用指数法则: ab+c=abacu2=uu=−4u2u−uu+3u
因式分解出通项 −u=−u(4u2+u−3)
=−u(4u2+u−3)
分解 4u2+u−3:(4u−3)(u+1)
4u2+u−3
改写成标准形式 ax2+bx+c=4u2+u−3
将表达式拆分成组
4u2+u−3
定义
12的因数:1,2,3,4,6,12
12
约数 (因数)
找到 12 的质因数:2,2,3
12
12除以 212=6⋅2=2⋅6
6除以 26=3⋅2=2⋅2⋅3
2,3 都是质数,因此无法进一步因数分解=2⋅2⋅3
乘以 12 的质因数:4,6
2⋅2=42⋅3=6
4,6
4,6
添加质因数: 2,3
将 1 和数字 12 自身相加1,12
12的因数1,2,3,4,6,12
12的负因数:−1,−2,−3,−4,−6,−12
将因数乘以 −1 得到负因数−1,−2,−3,−4,−6,−12
对于每两个因数 u∗v=−12,检验是否 u+v=1
检验 u=1,v=−12:u∗v=−12,u+v=−11⇒假检验 u=2,v=−6:u∗v=−12,u+v=−4⇒假
u=4,v=−3
分组为 (ax2+ux)+(vx+c)(4u2−3u)+(4u−3)
=(4u2−3u)+(4u−3)
从 4u2−3u 分解出因式 u:u(4u−3)
4u2−3u
使用指数法则: ab+c=abacu2=uu=4uu−3u
因式分解出通项 u=u(4u−3)
=u(4u−3)+(4u−3)
因式分解出通项 4u−3=(4u−3)(u+1)
=−u(4u−3)(u+1)
−u(4u−3)(u+1)=0
使用零因数法则: If ab=0then a=0or b=0u=0or4u−3=0oru+1=0
解 4u−3=0:u=43​
4u−3=0
将 3到右边
4u−3=0
两边加上 34u−3+3=0+3
化简4u=3
4u=3
两边除以 4
4u=3
两边除以 444u​=43​
化简u=43​
u=43​
解 u+1=0:u=−1
u+1=0
将 1到右边
u+1=0
两边减去 1u+1−1=0−1
化简u=−1
u=−1
解为u=0,u=43​,u=−1
u=sin(x)代回sin(x)=0,sin(x)=43​,sin(x)=−1
sin(x)=0,sin(x)=43​,sin(x)=−1
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
sin(x)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解 x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=43​:x=arcsin(43​)+2πn,x=π−arcsin(43​)+2πn
sin(x)=43​
使用反三角函数性质
sin(x)=43​
sin(x)=43​的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(43​)+2πn,x=π−arcsin(43​)+2πn
x=arcsin(43​)+2πn,x=π−arcsin(43​)+2πn
sin(x)=−1:x=23π​+2πn
sin(x)=−1
sin(x)=−1的通解
sin(x) 周期表(周期为 2πn"):
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
合并所有解x=2πn,x=π+2πn,x=arcsin(43​)+2πn,x=π−arcsin(43​)+2πn,x=23π​+2πn
以小数形式表示解x=2πn,x=π+2πn,x=0.84806…+2πn,x=π−0.84806…+2πn,x=23π​+2πn

作图

Sorry, your browser does not support this application
查看交互式图形

流行的例子

2cot(x)+3=02cot(x)+3=0cos(x+60)+sin(x)=0cos(x+60∘)+sin(x)=0sin(x)*cos(x)= 1/4sin(x)⋅cos(x)=41​sin(θ)=(-sqrt(3))/2 ,0<= θ<= 4pisin(θ)=2−3​​,0≤θ≤4π4sin(θ)+4=(-3)/(sin(θ)-1)4sin(θ)+4=sin(θ)−1−3​
学习工具人工智能数学求解器AI Chat工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序
公司关于 Symbolab日志帮助
合法的隐私权Service TermsCookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024