Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)=-cos(4x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)=−cos(4x)

Solution

x=6π+4πn​,x=−10π+4πn​
+1
Degrees
x=30∘+120∘n,x=−18∘−72∘n
Solution steps
sin(x)=−cos(4x)
Multiply by −1−sin(x)=cos(4x)
Rewrite using trig identities
−sin(x)=cos(4x)
Use the following identity: −sin(x)=sin(−x)sin(−(x))=cos(4x)
Use the following identity: cos(x)=sin(2π​−x)sin(−(x))=sin(2π​−4x)
sin(−(x))=sin(2π​−4x)
Apply trig inverse properties
sin(−(x))=sin(2π​−4x)
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn−(x)=2π​−4x+2πn,−(x)=π−(2π​−4x)+2πn
−(x)=2π​−4x+2πn,−(x)=π−(2π​−4x)+2πn
−(x)=2π​−4x+2πn:x=6π+4πn​
−(x)=2π​−4x+2πn
Expand −(x):−x
−(x)
Remove parentheses: (a)=a=−x
−x=2π​−4x+2πn
Move 4xto the left side
−x=2π​−4x+2πn
Add 4x to both sides−x+4x=2π​−4x+2πn+4x
Simplify3x=2π​+2πn
3x=2π​+2πn
Divide both sides by 3
3x=2π​+2πn
Divide both sides by 333x​=32π​​+32πn​
Simplify
33x​=32π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​​+32πn​:6π+4πn​
32π​​+32πn​
Apply rule ca​±cb​=ca±b​=32π​+2πn​
Join 2π​+2πn:2π+4πn​
2π​+2πn
Convert element to fraction: 2πn=22πn2​=2π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π+2πn⋅2​
Multiply the numbers: 2⋅2=4=2π+4πn​
=32π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π+4πn​
Multiply the numbers: 2⋅3=6=6π+4πn​
x=6π+4πn​
x=6π+4πn​
x=6π+4πn​
−(x)=π−(2π​−4x)+2πn:x=−10π+4πn​
−(x)=π−(2π​−4x)+2πn
Expand −(x):−x
−(x)
Remove parentheses: (a)=a=−x
Expand π−(2π​−4x)+2πn:π−2π​+4x+2πn
π−(2π​−4x)+2πn
−(2π​−4x):−2π​+4x
−(2π​−4x)
Distribute parentheses=−(2π​)−(−4x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2π​+4x
=π−2π​+4x+2πn
−x=π−2π​+4x+2πn
Move 4xto the left side
−x=π−2π​+4x+2πn
Subtract 4x from both sides−x−4x=π−2π​+4x+2πn−4x
Simplify−5x=π−2π​+2πn
−5x=π−2π​+2πn
Divide both sides by −5
−5x=π−2π​+2πn
Divide both sides by −5−5−5x​=−5π​−−52π​​+−52πn​
Simplify
−5−5x​=−5π​−−52π​​+−52πn​
Simplify −5−5x​:x
−5−5x​
Apply the fraction rule: −b−a​=ba​=55x​
Divide the numbers: 55​=1=x
Simplify −5π​−−52π​​+−52πn​:−10π+4πn​
−5π​−−52π​​+−52πn​
Apply rule ca​±cb​=ca±b​=−5π−2π​+2πn​
Apply the fraction rule: −ba​=−ba​=−5π−2π​+2πn​
Join π−2π​+2πn:2π+4πn​
π−2π​+2πn
Convert element to fraction: π=2π2​,2πn=22πn2​=2π2​−2π​+22πn⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π2−π+2πn⋅2​
π2−π+2πn⋅2=π+4πn
π2−π+2πn⋅2
Add similar elements: 2π−π=π=π+2⋅2πn
Multiply the numbers: 2⋅2=4=π+4πn
=2π+4πn​
=−52π+4πn​​
Simplify 52π+4πn​​:10π+4πn​
52π+4πn​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅5π+4πn​
Multiply the numbers: 2⋅5=10=10π+4πn​
=−10π+4πn​
x=−10π+4πn​
x=−10π+4πn​
x=−10π+4πn​
x=6π+4πn​,x=−10π+4πn​
x=6π+4πn​,x=−10π+4πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)= 2/(3sqrt(38))cos(2θ)= 20/29sin(x)=(sqrt(2))/42tan(2x)-6=08sin(θ)+15cos(θ)=18

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x)=-cos(4x) ?

    The general solution for sin(x)=-cos(4x) is x=(pi+4pin)/6 ,x=-(pi+4pin)/(10)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024