Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

8sin(θ)+15cos(θ)=18

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

8sin(θ)+15cos(θ)=18

Solution

NoSolutionforθ∈R
Solution steps
8sin(θ)+15cos(θ)=18
Subtract 15cos(θ) from both sides8sin(θ)=18−15cos(θ)
Square both sides(8sin(θ))2=(18−15cos(θ))2
Subtract (18−15cos(θ))2 from both sides64sin2(θ)−324+540cos(θ)−225cos2(θ)=0
Rewrite using trig identities
−324−225cos2(θ)+540cos(θ)+64sin2(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−324−225cos2(θ)+540cos(θ)+64(1−cos2(θ))
Simplify −324−225cos2(θ)+540cos(θ)+64(1−cos2(θ)):540cos(θ)−289cos2(θ)−260
−324−225cos2(θ)+540cos(θ)+64(1−cos2(θ))
Expand 64(1−cos2(θ)):64−64cos2(θ)
64(1−cos2(θ))
Apply the distributive law: a(b−c)=ab−aca=64,b=1,c=cos2(θ)=64⋅1−64cos2(θ)
Multiply the numbers: 64⋅1=64=64−64cos2(θ)
=−324−225cos2(θ)+540cos(θ)+64−64cos2(θ)
Simplify −324−225cos2(θ)+540cos(θ)+64−64cos2(θ):540cos(θ)−289cos2(θ)−260
−324−225cos2(θ)+540cos(θ)+64−64cos2(θ)
Group like terms=−225cos2(θ)+540cos(θ)−64cos2(θ)−324+64
Add similar elements: −225cos2(θ)−64cos2(θ)=−289cos2(θ)=−289cos2(θ)+540cos(θ)−324+64
Add/Subtract the numbers: −324+64=−260=540cos(θ)−289cos2(θ)−260
=540cos(θ)−289cos2(θ)−260
=540cos(θ)−289cos2(θ)−260
−260−289cos2(θ)+540cos(θ)=0
Solve by substitution
−260−289cos2(θ)+540cos(θ)=0
Let: cos(θ)=u−260−289u2+540u=0
−260−289u2+540u=0:u=289270​−i289835​​,u=289270​+i289835​​
−260−289u2+540u=0
Write in the standard form ax2+bx+c=0−289u2+540u−260=0
Solve with the quadratic formula
−289u2+540u−260=0
Quadratic Equation Formula:
For a=−289,b=540,c=−260u1,2​=2(−289)−540±5402−4(−289)(−260)​​
u1,2​=2(−289)−540±5402−4(−289)(−260)​​
Simplify 5402−4(−289)(−260)​:1635​i
5402−4(−289)(−260)​
Apply rule −(−a)=a=5402−4⋅289⋅260​
Multiply the numbers: 4⋅289⋅260=300560=5402−300560​
Apply imaginary number rule: −a​=ia​=i300560−5402​
−5402+300560​=1635​
−5402+300560​
5402=291600=−291600+300560​
Add/Subtract the numbers: −291600+300560=8960=8960​
Prime factorization of 8960:28⋅5⋅7
8960
8960divides by 28960=4480⋅2=2⋅4480
4480divides by 24480=2240⋅2=2⋅2⋅2240
2240divides by 22240=1120⋅2=2⋅2⋅2⋅1120
1120divides by 21120=560⋅2=2⋅2⋅2⋅2⋅560
560divides by 2560=280⋅2=2⋅2⋅2⋅2⋅2⋅280
280divides by 2280=140⋅2=2⋅2⋅2⋅2⋅2⋅2⋅140
140divides by 2140=70⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅70
70divides by 270=35⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅35
35divides by 535=7⋅5=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7
2,5,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7
=28⋅5⋅7
=28⋅5⋅7​
Apply radical rule: =28​5⋅7​
Apply radical rule: 28​=228​=24=245⋅7​
Refine=1635​
=1635​i
u1,2​=2(−289)−540±1635​i​
Separate the solutionsu1​=2(−289)−540+1635​i​,u2​=2(−289)−540−1635​i​
u=2(−289)−540+1635​i​:289270​−i289835​​
2(−289)−540+1635​i​
Remove parentheses: (−a)=−a=−2⋅289−540+1635​i​
Multiply the numbers: 2⋅289=578=−578−540+1635​i​
Apply the fraction rule: −ba​=−ba​=−578−540+1635​i​
Cancel 578−540+1635​i​:2892(−135+435​i)​
578−540+1635​i​
Factor −540+1635​i:4(−135+435​i)
−540+1635​i
Rewrite as=−4⋅135+4⋅435​i
Factor out common term 4=4(−135+435​i)
=5784(−135+435​i)​
Cancel the common factor: 2=2892(−135+435​i)​
=−2892(−135+435​i)​
Rewrite −2892(−135+435​i)​ in standard complex form: 289270​−289835​​i
−2892(−135+435​i)​
Expand 2(−135+435​i):−270+835​i
2(−135+435​i)
Apply the distributive law: a(b+c)=ab+aca=2,b=−135,c=435​i=2(−135)+2⋅435​i
Apply minus-plus rules+(−a)=−a=−2⋅135+2⋅435​i
Simplify −2⋅135+2⋅435​i:−270+835​i
−2⋅135+2⋅435​i
Multiply the numbers: 2⋅135=270=−270+2⋅435​i
Multiply the numbers: 2⋅4=8=−270+835​i
=−270+835​i
=−289−270+835​i​
Apply the fraction rule: ca±b​=ca​±cb​289−270+835​i​=−(−289270​)−(289835​i​)=−(−289270​)−(289835​i​)
Remove parentheses: (a)=a,−(−a)=a=289270​−289835​i​
=289270​−289835​​i
u=2(−289)−540−1635​i​:289270​+i289835​​
2(−289)−540−1635​i​
Remove parentheses: (−a)=−a=−2⋅289−540−1635​i​
Multiply the numbers: 2⋅289=578=−578−540−1635​i​
Apply the fraction rule: −ba​=−ba​=−578−540−1635​i​
Cancel 578−540−1635​i​:−2892(135+435​i)​
578−540−1635​i​
Factor −540−1635​i:−4(135+435​i)
−540−1635​i
Rewrite as=−4⋅135−4⋅435​i
Factor out common term 4=−4(135+435​i)
=−5784(135+435​i)​
Cancel the common factor: 2=−2892(135+435​i)​
=−(−2892(135+435​i)​)
Apply rule −(−a)=a=2892(135+435​i)​
Rewrite 2892(135+435​i)​ in standard complex form: 289270​+289835​​i
2892(135+435​i)​
Expand 2(135+435​i):270+835​i
2(135+435​i)
Apply the distributive law: a(b+c)=ab+aca=2,b=135,c=435​i=2⋅135+2⋅435​i
Simplify 2⋅135+2⋅435​i:270+835​i
2⋅135+2⋅435​i
Multiply the numbers: 2⋅135=270=270+2⋅435​i
Multiply the numbers: 2⋅4=8=270+835​i
=270+835​i
=289270+835​i​
Apply the fraction rule: ca±b​=ca​±cb​289270+835​i​=289270​+289835​i​=289270​+289835​i​
=289270​+289835​​i
The solutions to the quadratic equation are:u=289270​−i289835​​,u=289270​+i289835​​
Substitute back u=cos(θ)cos(θ)=289270​−i289835​​,cos(θ)=289270​+i289835​​
cos(θ)=289270​−i289835​​,cos(θ)=289270​+i289835​​
cos(θ)=289270​−i289835​​:No Solution
cos(θ)=289270​−i289835​​
NoSolution
cos(θ)=289270​+i289835​​:No Solution
cos(θ)=289270​+i289835​​
NoSolution
Combine all the solutionsNoSolution
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 8sin(θ)+15cos(θ)=18
Remove the ones that don't agree with the equation.
NoSolutionforθ∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(30)/(sin(A))=(34.4)/(sin(62))-5sin(x)=-2cos^2(x)+4,0<= x<= 2pisolvefor t,4.6=0.106cos(4.36t)sin(x)= 23/245-5cos(x)=4sin^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 8sin(θ)+15cos(θ)=18 ?

    The general solution for 8sin(θ)+15cos(θ)=18 is No Solution for θ\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024