Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(3x)=sin(x-30)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(3x)=sin(x−30∘)

Solution

x=6180∘(3n+1)​,x=−3180∘(3n+1)​
+1
Radians
x=6π​+2π​n,x=−3π​−πn
Solution steps
cos(3x)=sin(x−30∘)
Rewrite using trig identities
cos(3x)=sin(x−30∘)
Use the following identity: cos(x)=sin(90∘−x)cos(3x)=sin(90∘−3x)
cos(3x)=sin(90∘−3x)
Apply trig inverse properties
cos(3x)=sin(90∘−3x)
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πnx−30∘=90∘−3x+360∘n,x−30∘=180∘−(90∘−3x)+360∘n
x−30∘=90∘−3x+360∘n,x−30∘=180∘−(90∘−3x)+360∘n
x−30∘=90∘−3x+360∘n:x=6180∘(3n+1)​
x−30∘=90∘−3x+360∘n
Move 30∘to the right side
x−30∘=90∘−3x+360∘n
Add 30∘ to both sidesx−30∘+30∘=90∘−3x+360∘n+30∘
Simplify
x−30∘+30∘=90∘−3x+360∘n+30∘
Simplify x−30∘+30∘:x
x−30∘+30∘
Add similar elements: −30∘+30∘=0
=x
Simplify 90∘−3x+360∘n+30∘:−3x+360∘n+120∘
90∘−3x+360∘n+30∘
Group like terms=−3x+360∘n+90∘+30∘
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 90∘:multiply the denominator and numerator by 390∘=2⋅3180∘3​=90∘
=90∘+30∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6180∘3+180∘​
Add similar elements: 540∘+180∘=720∘=120∘
Cancel the common factor: 2=−3x+360∘n+120∘
x=−3x+360∘n+120∘
x=−3x+360∘n+120∘
x=−3x+360∘n+120∘
Move 3xto the left side
x=−3x+360∘n+120∘
Add 3x to both sidesx+3x=−3x+360∘n+120∘+3x
Simplify4x=360∘n+120∘
4x=360∘n+120∘
Divide both sides by 4
4x=360∘n+120∘
Divide both sides by 444x​=4360∘n​+4120∘​
Simplify
44x​=4360∘n​+4120∘​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 4360∘n​+4120∘​:6180∘(3n+1)​
4360∘n​+4120∘​
Apply rule ca​±cb​=ca±b​=4360∘n+120∘​
Join 360∘n+120∘:31080∘n+360∘​
360∘n+120∘
Convert element to fraction: 360∘n=3360∘n3​=3360∘n⋅3​+120∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3360∘n⋅3+360∘​
Multiply the numbers: 2⋅3=6=31080∘n+360∘​
=431080∘n+360∘​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅41080∘n+360∘​
Multiply the numbers: 3⋅4=12=121080∘n+360∘​
Factor 1080∘n+360∘:360∘(3n+1)
1080∘n+360∘
Rewrite as=3⋅360∘n+1⋅360∘
Factor out common term 360∘=360∘(3n+1)
=12360∘(3n+1)​
Cancel the common factor: 2=6180∘(3n+1)​
x=6180∘(3n+1)​
x=6180∘(3n+1)​
x=6180∘(3n+1)​
x−30∘=180∘−(90∘−3x)+360∘n:x=−3180∘(3n+1)​
x−30∘=180∘−(90∘−3x)+360∘n
Expand 180∘−(90∘−3x)+360∘n:180∘−90∘+3x+360∘n
180∘−(90∘−3x)+360∘n
−(90∘−3x):−90∘+3x
−(90∘−3x)
Distribute parentheses=−(90∘)−(−3x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−90∘+3x
=180∘−90∘+3x+360∘n
x−30∘=180∘−90∘+3x+360∘n
Move 30∘to the right side
x−30∘=180∘−90∘+3x+360∘n
Add 30∘ to both sidesx−30∘+30∘=180∘−90∘+3x+360∘n+30∘
Simplify
x−30∘+30∘=180∘−90∘+3x+360∘n+30∘
Simplify x−30∘+30∘:x
x−30∘+30∘
Add similar elements: −30∘+30∘=0
=x
Simplify 180∘−90∘+3x+360∘n+30∘:3x+180∘+360∘n−60∘
180∘−90∘+3x+360∘n+30∘
Group like terms=3x+180∘+360∘n−90∘+30∘
Least Common Multiplier of 2,6:6
2,6
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 6=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 90∘:multiply the denominator and numerator by 390∘=2⋅3180∘3​=90∘
=−90∘+30∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−180∘3+180∘​
Add similar elements: −540∘+180∘=−360∘=6−360∘​
Apply the fraction rule: b−a​=−ba​=−60∘
Cancel the common factor: 2=3x+180∘+360∘n−60∘
x=3x+180∘+360∘n−60∘
x=3x+180∘+360∘n−60∘
x=3x+180∘+360∘n−60∘
Move 3xto the left side
x=3x+180∘+360∘n−60∘
Subtract 3x from both sidesx−3x=3x+180∘+360∘n−60∘−3x
Simplify−2x=180∘+360∘n−60∘
−2x=180∘+360∘n−60∘
Divide both sides by −2
−2x=180∘+360∘n−60∘
Divide both sides by −2−2−2x​=−2180∘​+−2360∘n​−−260∘​
Simplify
−2−2x​=−2180∘​+−2360∘n​−−260∘​
Simplify −2−2x​:x
−2−2x​
Apply the fraction rule: −b−a​=ba​=22x​
Divide the numbers: 22​=1=x
Simplify −2180∘​+−2360∘n​−−260∘​:−3180∘(3n+1)​
−2180∘​+−2360∘n​−−260∘​
Apply rule ca​±cb​=ca±b​=−2180∘+360∘n−60∘​
Apply the fraction rule: −ba​=−ba​=−2180∘+360∘n−60∘​
Join 180∘+360∘n−60∘:3360∘+1080∘n​
180∘+360∘n−60∘
Convert element to fraction: 180∘=180∘,360∘n=3360∘n3​=180∘+3360∘n⋅3​−60∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3180∘3+360∘n⋅3−180∘​
180∘3+360∘n⋅3−180∘=360∘+1080∘n
180∘3+360∘n⋅3−180∘
Add similar elements: 540∘−180∘=360∘=360∘+2⋅540∘n
Multiply the numbers: 2⋅3=6=360∘+1080∘n
=3360∘+1080∘n​
=−23360∘+1080∘n​​
Simplify 23360∘+1080∘n​​:6360∘+1080∘n​
23360∘+1080∘n​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2360∘+1080∘n​
Multiply the numbers: 3⋅2=6=6360∘+1080∘n​
=−6360∘+1080∘n​
Cancel 6360∘+1080∘n​:3180∘(3n+1)​
6360∘+1080∘n​
Factor 360∘+1080∘n:360∘(1+3n)
360∘+1080∘n
Rewrite as=1⋅360∘+3⋅360∘n
Factor out common term 360∘=360∘(1+3n)
=6360∘(1+3n)​
Cancel the common factor: 2=3180∘(3n+1)​
=−3180∘(3n+1)​
x=−3180∘(3n+1)​
x=−3180∘(3n+1)​
x=−3180∘(3n+1)​
x=6180∘(3n+1)​,x=−3180∘(3n+1)​
x=6180∘(3n+1)​,x=−3180∘(3n+1)​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

885cos(θ)-70=cos(250)tan(x)+5=0,x<= 0<2pi2sqrt(3)cos(θ-pi/3)=3,0<= θ<= 2pisin(6x)=1tan(θ)= 12/6

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(3x)=sin(x-30) ?

    The general solution for cos(3x)=sin(x-30) is x=(180(3n+1))/6 ,x=-(180(3n+1))/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024