Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

55sin(θ)-20-20cos(θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

55sin(θ)−20−20cos(θ)=0

Solution

θ=0.69754…+2πn,θ=π+2πn
+1
Degrees
θ=39.96621…∘+360∘n,θ=180∘+360∘n
Solution steps
55sin(θ)−20−20cos(θ)=0
Add 20cos(θ) to both sides55sin(θ)−20=20cos(θ)
Square both sides(55sin(θ)−20)2=(20cos(θ))2
Subtract (20cos(θ))2 from both sides(55sin(θ)−20)2−400cos2(θ)=0
Rewrite using trig identities
(−20+55sin(θ))2−400cos2(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(−20+55sin(θ))2−400(1−sin2(θ))
Simplify (−20+55sin(θ))2−400(1−sin2(θ)):3425sin2(θ)−2200sin(θ)
(−20+55sin(θ))2−400(1−sin2(θ))
(−20+55sin(θ))2:400−2200sin(θ)+3025sin2(θ)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−20,b=55sin(θ)
=(−20)2+2(−20)⋅55sin(θ)+(55sin(θ))2
Simplify (−20)2+2(−20)⋅55sin(θ)+(55sin(θ))2:400−2200sin(θ)+3025sin2(θ)
(−20)2+2(−20)⋅55sin(θ)+(55sin(θ))2
Remove parentheses: (−a)=−a=(−20)2−2⋅20⋅55sin(θ)+(55sin(θ))2
(−20)2=400
(−20)2
Apply exponent rule: (−a)n=an,if n is even(−20)2=202=202
202=400=400
2⋅20⋅55sin(θ)=2200sin(θ)
2⋅20⋅55sin(θ)
Multiply the numbers: 2⋅20⋅55=2200=2200sin(θ)
(55sin(θ))2=3025sin2(θ)
(55sin(θ))2
Apply exponent rule: (a⋅b)n=anbn=552sin2(θ)
552=3025=3025sin2(θ)
=400−2200sin(θ)+3025sin2(θ)
=400−2200sin(θ)+3025sin2(θ)
=400−2200sin(θ)+3025sin2(θ)−400(1−sin2(θ))
Expand −400(1−sin2(θ)):−400+400sin2(θ)
−400(1−sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=−400,b=1,c=sin2(θ)=−400⋅1−(−400)sin2(θ)
Apply minus-plus rules−(−a)=a=−400⋅1+400sin2(θ)
Multiply the numbers: 400⋅1=400=−400+400sin2(θ)
=400−2200sin(θ)+3025sin2(θ)−400+400sin2(θ)
Simplify 400−2200sin(θ)+3025sin2(θ)−400+400sin2(θ):3425sin2(θ)−2200sin(θ)
400−2200sin(θ)+3025sin2(θ)−400+400sin2(θ)
Group like terms=−2200sin(θ)+3025sin2(θ)+400sin2(θ)+400−400
Add similar elements: 3025sin2(θ)+400sin2(θ)=3425sin2(θ)=−2200sin(θ)+3425sin2(θ)+400−400
400−400=0=3425sin2(θ)−2200sin(θ)
=3425sin2(θ)−2200sin(θ)
=3425sin2(θ)−2200sin(θ)
−2200sin(θ)+3425sin2(θ)=0
Solve by substitution
−2200sin(θ)+3425sin2(θ)=0
Let: sin(θ)=u−2200u+3425u2=0
−2200u+3425u2=0:u=13788​,u=0
−2200u+3425u2=0
Divide both sides by 3425−34252200u​+34253425u2​=34250​
Write in the standard form ax2+bx+c=0u2−13788u​=0
Solve with the quadratic formula
u2−13788u​=0
Quadratic Equation Formula:
For a=1,b=−13788​,c=0u1,2​=2⋅1−(−13788​)±(−13788​)2−4⋅1⋅0​​
u1,2​=2⋅1−(−13788​)±(−13788​)2−4⋅1⋅0​​
(−13788​)2−4⋅1⋅0​=13788​
(−13788​)2−4⋅1⋅0​
(−13788​)2=1372882​
(−13788​)2
Apply exponent rule: (−a)n=an,if n is even(−13788​)2=(13788​)2=(13788​)2
Apply exponent rule: (ba​)c=bcac​=1372882​
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=1372882​−0​
1372882​−0=1372882​=1372882​​
Apply radical rule: assuming a≥0,b≥0=1372​882​​
Apply radical rule: assuming a≥01372​=137=137882​​
Apply radical rule: assuming a≥0882​=88=13788​
u1,2​=2⋅1−(−13788​)±13788​​
Separate the solutionsu1​=2⋅1−(−13788​)+13788​​,u2​=2⋅1−(−13788​)−13788​​
u=2⋅1−(−13788​)+13788​​:13788​
2⋅1−(−13788​)+13788​​
Apply rule −(−a)=a=2⋅113788​+13788​​
Add similar elements: 13788​+13788​=2⋅13788​=2⋅12⋅13788​​
Multiply the numbers: 2⋅1=2=22⋅13788​​
Multiply 2⋅13788​:137176​
2⋅13788​
Multiply fractions: a⋅cb​=ca⋅b​=13788⋅2​
Multiply the numbers: 88⋅2=176=137176​
=2137176​​
Apply the fraction rule: acb​​=c⋅ab​=137⋅2176​
Multiply the numbers: 137⋅2=274=274176​
Cancel the common factor: 2=13788​
u=2⋅1−(−13788​)−13788​​:0
2⋅1−(−13788​)−13788​​
Apply rule −(−a)=a=2⋅113788​−13788​​
Add similar elements: 13788​−13788​=0=2⋅10​
Multiply the numbers: 2⋅1=2=20​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=13788​,u=0
Substitute back u=sin(θ)sin(θ)=13788​,sin(θ)=0
sin(θ)=13788​,sin(θ)=0
sin(θ)=13788​:θ=arcsin(13788​)+2πn,θ=π−arcsin(13788​)+2πn
sin(θ)=13788​
Apply trig inverse properties
sin(θ)=13788​
General solutions for sin(θ)=13788​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(13788​)+2πn,θ=π−arcsin(13788​)+2πn
θ=arcsin(13788​)+2πn,θ=π−arcsin(13788​)+2πn
sin(θ)=0:θ=2πn,θ=π+2πn
sin(θ)=0
General solutions for sin(θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+2πn,θ=π+2πn
θ=0+2πn,θ=π+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn,θ=π+2πn
Combine all the solutionsθ=arcsin(13788​)+2πn,θ=π−arcsin(13788​)+2πn,θ=2πn,θ=π+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 55sin(θ)−20−20cos(θ)=0
Remove the ones that don't agree with the equation.
Check the solution arcsin(13788​)+2πn:True
arcsin(13788​)+2πn
Plug in n=1arcsin(13788​)+2π1
For 55sin(θ)−20−20cos(θ)=0plug inθ=arcsin(13788​)+2π155sin(arcsin(13788​)+2π1)−20−20cos(arcsin(13788​)+2π1)=0
Refine0=0
⇒True
Check the solution π−arcsin(13788​)+2πn:False
π−arcsin(13788​)+2πn
Plug in n=1π−arcsin(13788​)+2π1
For 55sin(θ)−20−20cos(θ)=0plug inθ=π−arcsin(13788​)+2π155sin(π−arcsin(13788​)+2π1)−20−20cos(π−arcsin(13788​)+2π1)=0
Refine30.65693…=0
⇒False
Check the solution 2πn:False
2πn
Plug in n=12π1
For 55sin(θ)−20−20cos(θ)=0plug inθ=2π155sin(2π1)−20−20cos(2π1)=0
Refine−40=0
⇒False
Check the solution π+2πn:True
π+2πn
Plug in n=1π+2π1
For 55sin(θ)−20−20cos(θ)=0plug inθ=π+2π155sin(π+2π1)−20−20cos(π+2π1)=0
Refine0=0
⇒True
θ=arcsin(13788​)+2πn,θ=π+2πn
Show solutions in decimal formθ=0.69754…+2πn,θ=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

8sin^2(x)=15sin(x)cos(x)=cos(x)0.6875=cos(A)(sin(2x))/(sin(x))=1.52cot(2x)=4

Frequently Asked Questions (FAQ)

  • What is the general solution for 55sin(θ)-20-20cos(θ)=0 ?

    The general solution for 55sin(θ)-20-20cos(θ)=0 is θ=0.69754…+2pin,θ=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024