Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(1/(x-1))+arctan(2/(x+1))= pi/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(x−11​)+arctan(x+12​)=4π​

Solution

x=23+17​​,x=23−17​​
Solution steps
arctan(x−11​)+arctan(x+12​)=4π​
Rewrite using trig identities
arctan(x−11​)+arctan(x+12​)
Use the Sum to Product identity: arctan(s)+arctan(t)=arctan(1−sts+t​)=arctan(1−x−11​⋅x+12​x−11​+x+12​​)
arctan(1−x−11​⋅x+12​x−11​+x+12​​)=4π​
Apply trig inverse properties
arctan(1−x−11​⋅x+12​x−11​+x+12​​)=4π​
arctan(x)=a⇒x=tan(a)1−x−11​⋅x+12​x−11​+x+12​​=tan(4π​)
tan(4π​)=1
tan(4π​)
Use the following trivial identity:tan(4π​)=1
tan(4π​)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=1
=1
1−x−11​⋅x+12​x−11​+x+12​​=1
1−x−11​⋅x+12​x−11​+x+12​​=1
Solve 1−x−11​⋅x+12​x−11​+x+12​​=1:x=23+17​​,x=23−17​​
1−x−11​⋅x+12​x−11​+x+12​​=1
Simplify 1−x−11​⋅x+12​x−11​+x+12​​:x2−33x−1​
1−x−11​⋅x+12​x−11​+x+12​​
x−11​⋅x+12​=(x−1)(x+1)2​
x−11​⋅x+12​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=(x−1)(x+1)1⋅2​
Multiply the numbers: 1⋅2=2=(x−1)(x+1)2​
=1−(x−1)(x+1)2​x−11​+x+12​​
Join x−11​+x+12​:(x−1)(x+1)3x−1​
x−11​+x+12​
Least Common Multiplier of x−1,x+1:(x−1)(x+1)
x−1,x+1
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in x−1 or x+1=(x−1)(x+1)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM (x−1)(x+1)
For x−11​:multiply the denominator and numerator by x+1x−11​=(x−1)(x+1)1⋅(x+1)​=(x−1)(x+1)x+1​
For x+12​:multiply the denominator and numerator by x−1x+12​=(x+1)(x−1)2(x−1)​
=(x−1)(x+1)x+1​+(x+1)(x−1)2(x−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(x−1)(x+1)x+1+2(x−1)​
Expand x+1+2(x−1):3x−1
x+1+2(x−1)
Expand 2(x−1):2x−2
2(x−1)
Apply the distributive law: a(b−c)=ab−aca=2,b=x,c=1=2x−2⋅1
Multiply the numbers: 2⋅1=2=2x−2
=x+1+2x−2
Simplify x+1+2x−2:3x−1
x+1+2x−2
Group like terms=x+2x+1−2
Add similar elements: x+2x=3x=3x+1−2
Add/Subtract the numbers: 1−2=−1=3x−1
=3x−1
=(x−1)(x+1)3x−1​
=1−(x−1)(x+1)2​(x−1)(x+1)3x−1​​
Apply the fraction rule: acb​​=c⋅ab​=(x−1)(x+1)(1−(x−1)(x+1)2​)3x−1​
Join 1−(x−1)(x+1)2​:(x−1)(x+1)x2−3​
1−(x−1)(x+1)2​
Convert element to fraction: 1=(x−1)(x+1)1(x−1)(x+1)​=(x−1)(x+1)1⋅(x−1)(x+1)​−(x−1)(x+1)2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=(x−1)(x+1)1⋅(x−1)(x+1)−2​
Multiply: 1⋅(x−1)=(x−1)=(x−1)(x+1)(x−1)(x+1)−2​
Expand (x−1)(x+1)−2:x2−3
(x−1)(x+1)−2
Expand (x−1)(x+1):x2−1
(x−1)(x+1)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=x,b=1=x2−12
Apply rule 1a=112=1=x2−1
=x2−1−2
Subtract the numbers: −1−2=−3=x2−3
=(x−1)(x+1)x2−3​
=(x−1)(x+1)x2−3​(x−1)(x+1)3x−1​
Multiply (x−1)(x+1)(x−1)(x+1)x2−3​:x2−3
(x−1)(x+1)(x−1)(x+1)x2−3​
Multiply fractions: a⋅cb​=ca⋅b​=(x−1)(x+1)(x2−3)(x−1)(x+1)​
Cancel the common factor: x−1=x+1(x2−3)(x+1)​
Cancel the common factor: x+1=x2−3
=x2−33x−1​
x2−33x−1​=1
Multiply both sides by x2−3
x2−33x−1​=1
Multiply both sides by x2−3x2−33x−1​(x2−3)=1⋅(x2−3)
Simplify
x2−33x−1​(x2−3)=1⋅(x2−3)
Simplify x2−33x−1​(x2−3):3x−1
x2−33x−1​(x2−3)
Multiply fractions: a⋅cb​=ca⋅b​=x2−3(3x−1)(x2−3)​
Cancel the common factor: x2−3=3x−1
Simplify 1⋅(x2−3):x2−3
1⋅(x2−3)
Multiply: 1⋅(x2−3)=(x2−3)=(x2−3)
Remove parentheses: (a)=a=x2−3
3x−1=x2−3
3x−1=x2−3
3x−1=x2−3
Solve 3x−1=x2−3:x=23+17​​,x=23−17​​
3x−1=x2−3
Switch sidesx2−3=3x−1
Move 1to the left side
x2−3=3x−1
Add 1 to both sidesx2−3+1=3x−1+1
Simplifyx2−2=3x
x2−2=3x
Move 3xto the left side
x2−2=3x
Subtract 3x from both sidesx2−2−3x=3x−3x
Simplifyx2−2−3x=0
x2−2−3x=0
Write in the standard form ax2+bx+c=0x2−3x−2=0
Solve with the quadratic formula
x2−3x−2=0
Quadratic Equation Formula:
For a=1,b=−3,c=−2x1,2​=2⋅1−(−3)±(−3)2−4⋅1⋅(−2)​​
x1,2​=2⋅1−(−3)±(−3)2−4⋅1⋅(−2)​​
(−3)2−4⋅1⋅(−2)​=17​
(−3)2−4⋅1⋅(−2)​
Apply rule −(−a)=a=(−3)2+4⋅1⋅2​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32+4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=32+8​
32=9=9+8​
Add the numbers: 9+8=17=17​
x1,2​=2⋅1−(−3)±17​​
Separate the solutionsx1​=2⋅1−(−3)+17​​,x2​=2⋅1−(−3)−17​​
x=2⋅1−(−3)+17​​:23+17​​
2⋅1−(−3)+17​​
Apply rule −(−a)=a=2⋅13+17​​
Multiply the numbers: 2⋅1=2=23+17​​
x=2⋅1−(−3)−17​​:23−17​​
2⋅1−(−3)−17​​
Apply rule −(−a)=a=2⋅13−17​​
Multiply the numbers: 2⋅1=2=23−17​​
The solutions to the quadratic equation are:x=23+17​​,x=23−17​​
x=23+17​​,x=23−17​​
Verify Solutions
Find undefined (singularity) points:x=3​,x=−3​,x=1,x=−1
Take the denominator(s) of 1−x−11​⋅x+12​x−11​+x+12​​ and compare to zero
Solve 1−x−11​⋅x+12​=0:x=3​,x=−3​
1−x−11​⋅x+12​=0
Simplify −x−11​⋅x+12​:−(x−1)(x+1)2​
−x−11​⋅x+12​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=−(x−1)(x+1)1⋅2​
Multiply the numbers: 1⋅2=2=−(x−1)(x+1)2​
1−(x−1)(x+1)2​=0
Multiply both sides by (x−1)(x+1)
1−(x−1)(x+1)2​=0
Multiply both sides by (x−1)(x+1)1⋅(x−1)(x+1)−(x−1)(x+1)2​(x−1)(x+1)=0⋅(x−1)(x+1)
Simplify
1⋅(x−1)(x+1)−(x−1)(x+1)2​(x−1)(x+1)=0⋅(x−1)(x+1)
Simplify 1⋅(x−1)(x+1):(x−1)(x+1)
1⋅(x−1)(x+1)
Multiply: 1⋅(x−1)=(x−1)=(x−1)(x+1)
Simplify −(x−1)(x+1)2​(x−1)(x+1):−2
−(x−1)(x+1)2​(x−1)(x+1)
Multiply fractions: a⋅cb​=ca⋅b​=−(x−1)(x+1)2(x−1)(x+1)​
Cancel the common factor: x−1=−x+12(x+1)​
Cancel the common factor: x+1=−2
Simplify 0⋅(x−1)(x+1):0
0⋅(x−1)(x+1)
Apply rule 0⋅a=0=0
(x−1)(x+1)−2=0
(x−1)(x+1)−2=0
(x−1)(x+1)−2=0
Solve (x−1)(x+1)−2=0:x=3​,x=−3​
(x−1)(x+1)−2=0
Expand (x−1)(x+1)−2:x2−3
(x−1)(x+1)−2
Expand (x−1)(x+1):x2−1
(x−1)(x+1)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=x,b=1=x2−12
Apply rule 1a=112=1=x2−1
=x2−1−2
Subtract the numbers: −1−2=−3=x2−3
x2−3=0
Solve with the quadratic formula
x2−3=0
Quadratic Equation Formula:
For a=1,b=0,c=−3x1,2​=2⋅1−0±02−4⋅1⋅(−3)​​
x1,2​=2⋅1−0±02−4⋅1⋅(−3)​​
02−4⋅1⋅(−3)​=23​
02−4⋅1⋅(−3)​
Apply rule 0a=002=0=0−4⋅1⋅(−3)​
Apply rule −(−a)=a=0+4⋅1⋅3​
Multiply the numbers: 4⋅1⋅3=12=0+12​
Add the numbers: 0+12=12=12​
Prime factorization of 12:22⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
=22⋅3
=22⋅3​
Apply radical rule: =3​22​
Apply radical rule: 22​=2=23​
x1,2​=2⋅1−0±23​​
Separate the solutionsx1​=2⋅1−0+23​​,x2​=2⋅1−0−23​​
x=2⋅1−0+23​​:3​
2⋅1−0+23​​
−0+23​=23​=2⋅123​​
Multiply the numbers: 2⋅1=2=223​​
Divide the numbers: 22​=1=3​
x=2⋅1−0−23​​:−3​
2⋅1−0−23​​
−0−23​=−23​=2⋅1−23​​
Multiply the numbers: 2⋅1=2=2−23​​
Apply the fraction rule: b−a​=−ba​=−223​​
Divide the numbers: 22​=1=−3​
The solutions to the quadratic equation are:x=3​,x=−3​
x=3​,x=−3​
Verify Solutions
Find undefined (singularity) points:x=1,x=−1
Take the denominator(s) of 1−x−11​⋅x+12​ and compare to zero
Solve x−1=0:x=1
x−1=0
Move 1to the right side
x−1=0
Add 1 to both sidesx−1+1=0+1
Simplifyx=1
x=1
Solve x+1=0:x=−1
x+1=0
Move 1to the right side
x+1=0
Subtract 1 from both sidesx+1−1=0−1
Simplifyx=−1
x=−1
The following points are undefinedx=1,x=−1
Combine undefined points with solutions:
x=3​,x=−3​
Solve x−1=0:x=1
x−1=0
Move 1to the right side
x−1=0
Add 1 to both sidesx−1+1=0+1
Simplifyx=1
x=1
Solve x+1=0:x=−1
x+1=0
Move 1to the right side
x+1=0
Subtract 1 from both sidesx+1−1=0−1
Simplifyx=−1
x=−1
The following points are undefinedx=3​,x=−3​,x=1,x=−1
Combine undefined points with solutions:
x=23+17​​,x=23−17​​
x=23+17​​,x=23−17​​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(x−11​)+arctan(x+12​)=4π​
Remove the ones that don't agree with the equation.
Check the solution 23+17​​:True
23+17​​
Plug in n=123+17​​
For arctan(x−11​)+arctan(x+12​)=4π​plug inx=23+17​​arctan(23+17​​−11​)+arctan(23+17​​+12​)=4π​
Refine0.78539…=0.78539…
⇒True
Check the solution 23−17​​:True
23−17​​
Plug in n=123−17​​
For arctan(x−11​)+arctan(x+12​)=4π​plug inx=23−17​​arctan(23−17​​−11​)+arctan(23−17​​+12​)=4π​
Refine0.78539…=0.78539…
⇒True
x=23+17​​,x=23−17​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(3x)=-tan(-(2pi)/5)cos(x)= 60/61cot(x)=sqrt(2)cos(θ)cot(θ)=-cos(θ)tan(x/2)=-1/(sqrt(3))

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(1/(x-1))+arctan(2/(x+1))= pi/4 ?

    The general solution for arctan(1/(x-1))+arctan(2/(x+1))= pi/4 is x=(3+sqrt(17))/2 ,x=(3-sqrt(17))/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024