Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x)+arctan(1-x)=arctan(9/7)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(x)+arctan(1−x)=arctan(79​)

Solution

x=32​,x=31​
Solution steps
arctan(x)+arctan(1−x)=arctan(79​)
Rewrite using trig identities
arctan(x)+arctan(1−x)
Use the Sum to Product identity: arctan(s)+arctan(t)=arctan(1−sts+t​)=arctan(1−x(1−x)x+1−x​)
arctan(1−x(1−x)x+1−x​)=arctan(79​)
Apply trig inverse properties
arctan(1−x(1−x)x+1−x​)=arctan(79​)
arctan(x)=a⇒x=tan(a)1−x(1−x)x+1−x​=tan(arctan(79​))
tan(arctan(79​))=79​
tan(arctan(79​))
Rewrite using trig identities:tan(arctan(79​))=79​
Use the following identity: tan(arctan(x))=x
=79​
=79​
1−x(1−x)x+1−x​=79​
1−x(1−x)x+1−x​=79​
Solve 1−x(1−x)x+1−x​=79​:x=32​,x=31​
1−x(1−x)x+1−x​=79​
Cross multiply
1−x(1−x)x+1−x​=79​
Simplify 1−x(1−x)x+1−x​:1−x(1−x)1​
1−x(1−x)x+1−x​
x+1−x=1
x+1−x
Group like terms=x−x+1
Add similar elements: x−x=0=1
=1−x(−x+1)1​
1−x(1−x)1​=79​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c1⋅7=(1−x(1−x))⋅9
Simplify 1⋅7:7
1⋅7
Multiply the numbers: 1⋅7=7=7
7=(1−x(1−x))⋅9
7=(1−x(1−x))⋅9
Solve 7=(1−x(1−x))⋅9:x=32​,x=31​
7=(1−x(1−x))⋅9
Expand (1−x(1−x))⋅9:9−9x+9x2
(1−x(1−x))⋅9
Expand 1−x(1−x):1−x+x2
1−x(1−x)
Expand −x(1−x):−x+x2
−x(1−x)
Apply the distributive law: a(b−c)=ab−aca=−x,b=1,c=x=−x⋅1−(−x)x
Apply minus-plus rules−(−a)=a=−1⋅x+xx
Simplify −1⋅x+xx:−x+x2
−1⋅x+xx
1⋅x=x
1⋅x
Multiply: 1⋅x=x=x
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=−x+x2
=−x+x2
=1−x+x2
=9(x2−x+1)
=9(1−x+x2)
Distribute parentheses=9⋅1+9(−x)+9x2
Apply minus-plus rules+(−a)=−a=9⋅1−9x+9x2
Multiply the numbers: 9⋅1=9=9−9x+9x2
7=9−9x+9x2
Switch sides9−9x+9x2=7
Move 7to the left side
9−9x+9x2=7
Subtract 7 from both sides9−9x+9x2−7=7−7
Simplify9x2−9x+2=0
9x2−9x+2=0
Solve with the quadratic formula
9x2−9x+2=0
Quadratic Equation Formula:
For a=9,b=−9,c=2x1,2​=2⋅9−(−9)±(−9)2−4⋅9⋅2​​
x1,2​=2⋅9−(−9)±(−9)2−4⋅9⋅2​​
(−9)2−4⋅9⋅2​=3
(−9)2−4⋅9⋅2​
Apply exponent rule: (−a)n=an,if n is even(−9)2=92=92−4⋅9⋅2​
Multiply the numbers: 4⋅9⋅2=72=92−72​
92=81=81−72​
Subtract the numbers: 81−72=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
x1,2​=2⋅9−(−9)±3​
Separate the solutionsx1​=2⋅9−(−9)+3​,x2​=2⋅9−(−9)−3​
x=2⋅9−(−9)+3​:32​
2⋅9−(−9)+3​
Apply rule −(−a)=a=2⋅99+3​
Add the numbers: 9+3=12=2⋅912​
Multiply the numbers: 2⋅9=18=1812​
Cancel the common factor: 6=32​
x=2⋅9−(−9)−3​:31​
2⋅9−(−9)−3​
Apply rule −(−a)=a=2⋅99−3​
Subtract the numbers: 9−3=6=2⋅96​
Multiply the numbers: 2⋅9=18=186​
Cancel the common factor: 6=31​
The solutions to the quadratic equation are:x=32​,x=31​
x=32​,x=31​
x=32​,x=31​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(x)+arctan(1−x)=arctan(79​)
Remove the ones that don't agree with the equation.
Check the solution 32​:True
32​
Plug in n=132​
For arctan(x)+arctan(1−x)=arctan(79​)plug inx=32​arctan(32​)+arctan(1−32​)=arctan(79​)
Refine0.90975…=0.90975…
⇒True
Check the solution 31​:True
31​
Plug in n=131​
For arctan(x)+arctan(1−x)=arctan(79​)plug inx=31​arctan(31​)+arctan(1−31​)=arctan(79​)
Refine0.90975…=0.90975…
⇒True
x=32​,x=31​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(2cos(x)+1)(sin(x)-1)=03cos^2(θ)-sin^2(θ)=0sin(x)=((sqrt(6))/4)sqrt(3)*sin(x)+cos(x)=sqrt(3)sin(θ)=(sqrt(5))/5

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(x)+arctan(1-x)=arctan(9/7) ?

    The general solution for arctan(x)+arctan(1-x)=arctan(9/7) is x= 2/3 ,x= 1/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024