Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)+sqrt(3)sin(x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)+3​sin(x)=2

Solution

x=3π​+2πn
+1
Degrees
x=60∘+360∘n
Solution steps
cos(x)+3​sin(x)=2
Subtract 3​sin(x) from both sidescos(x)=2−3​sin(x)
Square both sidescos2(x)=(2−3​sin(x))2
Subtract (2−3​sin(x))2 from both sidescos2(x)−4+43​sin(x)−3sin2(x)=0
Rewrite using trig identities
−4+cos2(x)−3sin2(x)+4sin(x)3​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−4+1−sin2(x)−3sin2(x)+4sin(x)3​
Simplify −4+1−sin2(x)−3sin2(x)+4sin(x)3​:43​sin(x)−4sin2(x)−3
−4+1−sin2(x)−3sin2(x)+4sin(x)3​
Add similar elements: −sin2(x)−3sin2(x)=−4sin2(x)=−4+1−4sin2(x)+43​sin(x)
Add/Subtract the numbers: −4+1=−3=43​sin(x)−4sin2(x)−3
=43​sin(x)−4sin2(x)−3
−3−4sin2(x)+4sin(x)3​=0
Solve by substitution
−3−4sin2(x)+4sin(x)3​=0
Let: sin(x)=u−3−4u2+4u3​=0
−3−4u2+4u3​=0:u=23​​
−3−4u2+4u3​=0
Write in the standard form ax2+bx+c=0−4u2+43​u−3=0
Solve with the quadratic formula
−4u2+43​u−3=0
Quadratic Equation Formula:
For a=−4,b=43​,c=−3u1,2​=2(−4)−43​±(43​)2−4(−4)(−3)​​
u1,2​=2(−4)−43​±(43​)2−4(−4)(−3)​​
(43​)2−4(−4)(−3)=0
(43​)2−4(−4)(−3)
Apply rule −(−a)=a=(43​)2−4⋅4⋅3
(43​)2=42⋅3
(43​)2
Apply exponent rule: (a⋅b)n=anbn=42(3​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=42⋅3
4⋅4⋅3=48
4⋅4⋅3
Multiply the numbers: 4⋅4⋅3=48=48
=42⋅3−48
42⋅3=48
42⋅3
42=16=16⋅3
Multiply the numbers: 16⋅3=48=48
=48−48
Subtract the numbers: 48−48=0=0
u1,2​=2(−4)−43​±0​​
u=2(−4)−43​​
2(−4)−43​​=23​​
2(−4)−43​​
Remove parentheses: (−a)=−a=−2⋅4−43​​
Multiply the numbers: 2⋅4=8=−8−43​​
Apply the fraction rule: −b−a​=ba​=843​​
Cancel the common factor: 4=23​​
u=23​​
The solution to the quadratic equation is:u=23​​
Substitute back u=sin(x)sin(x)=23​​
sin(x)=23​​
sin(x)=23​​:x=3π​+2πn,x=32π​+2πn
sin(x)=23​​
General solutions for sin(x)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=3π​+2πn,x=32π​+2πn
x=3π​+2πn,x=32π​+2πn
Combine all the solutionsx=3π​+2πn,x=32π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into cos(x)+3​sin(x)=2
Remove the ones that don't agree with the equation.
Check the solution 3π​+2πn:True
3π​+2πn
Plug in n=13π​+2π1
For cos(x)+3​sin(x)=2plug inx=3π​+2π1cos(3π​+2π1)+3​sin(3π​+2π1)=2
Refine2=2
⇒True
Check the solution 32π​+2πn:False
32π​+2πn
Plug in n=132π​+2π1
For cos(x)+3​sin(x)=2plug inx=32π​+2π1cos(32π​+2π1)+3​sin(32π​+2π1)=2
Refine1=2
⇒False
x=3π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(θ)=(sqrt(11))/54cos^2(x)tan(x)-tan(x)=02cos(pi/4-3x)=sqrt(2)3sec^2(x)=sec(x)tan^2(x)-1=sec^2(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)+sqrt(3)sin(x)=2 ?

    The general solution for cos(x)+sqrt(3)sin(x)=2 is x= pi/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024