Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)= 3/5 sin(x+pi/2)+cos(pi-x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)=53​sin(x+2π​)+cos(π−x)

Solution

x=−0.38050…+πn
+1
Degrees
x=−21.80140…∘+180∘n
Solution steps
sin(x)=53​sin(x+2π​)+cos(π−x)
Rewrite using trig identities
sin(x)=53​sin(x+2π​)+cos(π−x)
Rewrite using trig identities
cos(π−x)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(π)cos(x)+sin(π)sin(x)
Simplify cos(π)cos(x)+sin(π)sin(x):−cos(x)
cos(π)cos(x)+sin(π)sin(x)
cos(π)cos(x)=−cos(x)
cos(π)cos(x)
Simplify cos(π):−1
cos(π)
Use the following trivial identity:cos(π)=(−1)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅cos(x)
Multiply: 1⋅cos(x)=cos(x)=−cos(x)
=−cos(x)+sin(π)sin(x)
sin(π)sin(x)=0
sin(π)sin(x)
Simplify sin(π):0
sin(π)
Use the following trivial identity:sin(π)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
=−cos(x)+0
−cos(x)+0=−cos(x)=−cos(x)
=−cos(x)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(x)cos(2π​)+cos(x)sin(2π​)
Simplify sin(x)cos(2π​)+cos(x)sin(2π​):cos(x)
sin(x)cos(2π​)+cos(x)sin(2π​)
sin(x)cos(2π​)=0
sin(x)cos(2π​)
Simplify cos(2π​):0
cos(2π​)
Use the following trivial identity:cos(2π​)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
=0⋅sin(x)
Apply rule 0⋅a=0=0
cos(x)sin(2π​)=cos(x)
cos(x)sin(2π​)
Simplify sin(2π​):1
sin(2π​)
Use the following trivial identity:sin(2π​)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=1⋅cos(x)
Multiply: cos(x)⋅1=cos(x)=cos(x)
=0+cos(x)
0+cos(x)=cos(x)=cos(x)
=cos(x)
sin(x)=53​cos(x)−cos(x)
Simplify 53​cos(x)−cos(x):−52​cos(x)
53​cos(x)−cos(x)
Factor out common term cos(x)=cos(x)(53​−1)
53​−1=−52​
53​−1
Convert element to fraction: 1=51⋅5​=53​−51⋅5​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=53−1⋅5​
3−1⋅5=−2
3−1⋅5
Multiply the numbers: 1⋅5=5=3−5
Subtract the numbers: 3−5=−2=−2
=5−2​
Apply the fraction rule: b−a​=−ba​=−52​
=−52​cos(x)
sin(x)=−52​cos(x)
sin(x)=−52​cos(x)
Subtract −52​cos(x) from both sidessin(x)+52​cos(x)=0
Simplify sin(x)+52​cos(x):55sin(x)+2cos(x)​
sin(x)+52​cos(x)
Multiply 52​cos(x):52cos(x)​
52​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=52cos(x)​
=sin(x)+52cos(x)​
Convert element to fraction: sin(x)=5sin(x)5​=5sin(x)⋅5​+52cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=5sin(x)⋅5+2cos(x)​
55sin(x)+2cos(x)​=0
g(x)f(x)​=0⇒f(x)=05sin(x)+2cos(x)=0
Rewrite using trig identities
5sin(x)+2cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)5sin(x)+2cos(x)​=cos(x)0​
Simplifycos(x)5sin(x)​+2=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)5tan(x)+2=0
5tan(x)+2=0
Move 2to the right side
5tan(x)+2=0
Subtract 2 from both sides5tan(x)+2−2=0−2
Simplify5tan(x)=−2
5tan(x)=−2
Divide both sides by 5
5tan(x)=−2
Divide both sides by 555tan(x)​=5−2​
Simplifytan(x)=−52​
tan(x)=−52​
Apply trig inverse properties
tan(x)=−52​
General solutions for tan(x)=−52​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−52​)+πn
x=arctan(−52​)+πn
Show solutions in decimal formx=−0.38050…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arccosh(x)=(2pi)/7-6sin(x)-4sin(2x)=0tan(θ)=(-4sqrt(3))/4cos(x)= 6/253sin(φ)-cos(2φ)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x)= 3/5 sin(x+pi/2)+cos(pi-x) ?

    The general solution for sin(x)= 3/5 sin(x+pi/2)+cos(pi-x) is x=-0.38050…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024