Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot^2(x)=tan(x/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot2(x)=tan(2x​)

Solution

x=2⋅0.47448…+2πn,x=2⋅1.34922…+2πn
+1
Degrees
x=54.37186…∘+360∘n,x=154.60973…∘+360∘n
Solution steps
cot2(x)=tan(2x​)
Subtract tan(2x​) from both sidescot2(x)−tan(2x​)=0
Let: u=2x​cot2(2u)−tan(u)=0
Rewrite using trig identities
cot2(2u)−tan(u)
Use the basic trigonometric identity: cot(x)=tan(x)1​=(tan(2u)1​)2−tan(u)
(tan(2u)1​)2=tan2(2u)1​
(tan(2u)1​)2
Apply exponent rule: (ba​)c=bcac​=tan2(2u)12​
Apply rule 1a=112=1=tan2(2u)1​
=tan2(2u)1​−tan(u)
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=(1−tan2(u)2tan(u)​)21​−tan(u)
Simplify (1−tan2(u)2tan(u)​)21​−tan(u):4tan2(u)(1−tan2(u))2​−tan(u)
(1−tan2(u)2tan(u)​)21​−tan(u)
(1−tan2(u)2tan(u)​)21​=22tan2(u)(1−tan2(u))2​
(1−tan2(u)2tan(u)​)21​
(1−tan2(u)2tan(u)​)2=(1−tan2(u))222tan2(u)​
(1−tan2(u)2tan(u)​)2
Apply exponent rule: (ba​)c=bcac​=(1−tan2(u))2(2tan(u))2​
Apply exponent rule: (a⋅b)n=anbn(2tan(u))2=22tan2(u)=(1−tan2(u))222tan2(u)​
=(1−tan2(u))222tan2(u)​1​
Apply the fraction rule: cb​1​=bc​=22tan2(u)(1−tan2(u))2​
=22tan2(u)(−tan2(u)+1)2​−tan(u)
22=4=4tan2(u)(−tan2(u)+1)2​−tan(u)
=4tan2(u)(1−tan2(u))2​−tan(u)
4tan2(u)(1−tan2(u))2​−tan(u)=0
Solve by substitution
4tan2(u)(1−tan2(u))2​−tan(u)=0
Let: tan(u)=u4u2(1−u2)2​−u=0
4u2(1−u2)2​−u=0:u≈0.51361…,u≈4.43910…
4u2(1−u2)2​−u=0
Multiply both sides by 4u2
4u2(1−u2)2​−u=0
Multiply both sides by 4u24u2(1−u2)2​⋅4u2−u⋅4u2=0⋅4u2
Simplify
4u2(1−u2)2​⋅4u2−u⋅4u2=0⋅4u2
Simplify 4u2(1−u2)2​⋅4u2:(1−u2)2
4u2(1−u2)2​⋅4u2
Multiply fractions: a⋅cb​=ca⋅b​=4u2(1−u2)2⋅4u2​
Cancel the common factor: 4=u2(1−u2)2u2​
Cancel the common factor: u2=(1−u2)2
Simplify −u⋅4u2:−4u3
−u⋅4u2
Apply exponent rule: ab⋅ac=ab+cuu2=u1+2=−4u1+2
Add the numbers: 1+2=3=−4u3
Simplify 0⋅4u2:0
0⋅4u2
Apply rule 0⋅a=0=0
(1−u2)2−4u3=0
(1−u2)2−4u3=0
(1−u2)2−4u3=0
Solve (1−u2)2−4u3=0:u≈0.51361…,u≈4.43910…
(1−u2)2−4u3=0
Expand (1−u2)2−4u3:1−2u2+u4−4u3
(1−u2)2−4u3
(1−u2)2:1−2u2+u4
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=u2
=12−2⋅1⋅u2+(u2)2
Simplify 12−2⋅1⋅u2+(u2)2:1−2u2+u4
12−2⋅1⋅u2+(u2)2
Apply rule 1a=112=1=1−2⋅1⋅u2+(u2)2
2⋅1⋅u2=2u2
2⋅1⋅u2
Multiply the numbers: 2⋅1=2=2u2
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
=1−2u2+u4
=1−2u2+u4
=1−2u2+u4−4u3
1−2u2+u4−4u3=0
Write in the standard form an​xn+…+a1​x+a0​=0u4−4u3−2u2+1=0
Find one solution for u4−4u3−2u2+1=0 using Newton-Raphson:u≈0.51361…
u4−4u3−2u2+1=0
Newton-Raphson Approximation Definition
f(u)=u4−4u3−2u2+1
Find f′(u):4u3−12u2−4u
dud​(u4−4u3−2u2+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u4)−dud​(4u3)−dud​(2u2)+dud​(1)
dud​(u4)=4u3
dud​(u4)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4u4−1
Simplify=4u3
dud​(4u3)=12u2
dud​(4u3)
Take the constant out: (a⋅f)′=a⋅f′=4dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=4⋅3u3−1
Simplify=12u2
dud​(2u2)=4u
dud​(2u2)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅2u2−1
Simplify=4u
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=4u3−12u2−4u+0
Simplify=4u3−12u2−4u
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=14−4⋅13−2⋅12+1=−4f′(u0​)=4⋅13−12⋅12−4⋅1=−12u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=0.53804…:Δu2​=0.12862…
f(u1​)=0.66666…4−4⋅0.66666…3−2⋅0.66666…2+1=−0.87654…f′(u1​)=4⋅0.66666…3−12⋅0.66666…2−4⋅0.66666…=−6.81481…u2​=0.53804…
Δu2​=∣0.53804…−0.66666…∣=0.12862…Δu2​=0.12862…
u3​=0.51441…:Δu3​=0.02362…
f(u2​)=0.53804…4−4⋅0.53804…3−2⋅0.53804…2+1=−0.11821…f′(u2​)=4⋅0.53804…3−12⋅0.53804…2−4⋅0.53804…=−5.00302…u3​=0.51441…
Δu3​=∣0.51441…−0.53804…∣=0.02362…Δu3​=0.02362…
u4​=0.51362…:Δu4​=0.00079…
f(u3​)=0.51441…4−4⋅0.51441…3−2⋅0.51441…2+1=−0.00372…f′(u3​)=4⋅0.51441…3−12⋅0.51441…2−4⋅0.51441…=−4.68863…u4​=0.51362…
Δu4​=∣0.51362…−0.51441…∣=0.00079…Δu4​=0.00079…
u5​=0.51361…:Δu5​=8.89103E−7
f(u4​)=0.51362…4−4⋅0.51362…3−2⋅0.51362…2+1=−4.15938E−6f′(u4​)=4⋅0.51362…3−12⋅0.51362…2−4⋅0.51362…=−4.67817…u5​=0.51361…
Δu5​=∣0.51361…−0.51362…∣=8.89103E−7Δu5​=8.89103E−7
u≈0.51361…
Apply long division:u−0.51361…u4−4u3−2u2+1​=u3−3.48638…u2−3.79067…u−1.94696…
u3−3.48638…u2−3.79067…u−1.94696…≈0
Find one solution for u3−3.48638…u2−3.79067…u−1.94696…=0 using Newton-Raphson:u≈4.43910…
u3−3.48638…u2−3.79067…u−1.94696…=0
Newton-Raphson Approximation Definition
f(u)=u3−3.48638…u2−3.79067…u−1.94696…
Find f′(u):3u2−6.97276…u−3.79067…
dud​(u3−3.48638…u2−3.79067…u−1.94696…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u3)−dud​(3.48638…u2)−dud​(3.79067…u)−dud​(1.94696…)
dud​(u3)=3u2
dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud​(3.48638…u2)=6.97276…u
dud​(3.48638…u2)
Take the constant out: (a⋅f)′=a⋅f′=3.48638…dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3.48638…⋅2u2−1
Simplify=6.97276…u
dud​(3.79067…u)=3.79067…
dud​(3.79067…u)
Take the constant out: (a⋅f)′=a⋅f′=3.79067…dudu​
Apply the common derivative: dudu​=1=3.79067…⋅1
Simplify=3.79067…
dud​(1.94696…)=0
dud​(1.94696…)
Derivative of a constant: dxd​(a)=0=0
=3u2−6.97276…u−3.79067…−0
Simplify=3u2−6.97276…u−3.79067…
Let u0​=4Compute un+1​ until Δun+1​<0.000001
u1​=4.54489…:Δu1​=0.54489…
f(u0​)=43−3.48638…⋅42−3.79067…⋅4−1.94696…=−8.89174…f′(u0​)=3⋅42−6.97276…⋅4−3.79067…=16.31828…u1​=4.54489…
Δu1​=∣4.54489…−4∣=0.54489…Δu1​=0.54489…
u2​=4.44335…:Δu2​=0.10154…
f(u1​)=4.54489…3−3.48638…⋅4.54489…2−3.79067…⋅4.54489…−1.94696…=2.68956…f′(u1​)=3⋅4.54489…2−6.97276…⋅4.54489…−3.79067…=26.48706…u2​=4.44335…
Δu2​=∣4.44335…−4.54489…∣=0.10154…Δu2​=0.10154…
u3​=4.43911…:Δu3​=0.00423…
f(u2​)=4.44335…3−3.48638…⋅4.44335…2−3.79067…⋅4.44335…−1.94696…=0.10359…f′(u2​)=3⋅4.44335…2−6.97276…⋅4.44335…−3.79067…=24.45702…u3​=4.43911…
Δu3​=∣4.43911…−4.44335…∣=0.00423…Δu3​=0.00423…
u4​=4.43910…:Δu4​=7.24246E−6
f(u3​)=4.43911…3−3.48638…⋅4.43911…2−3.79067…⋅4.43911…−1.94696…=0.00017…f′(u3​)=3⋅4.43911…2−6.97276…⋅4.43911…−3.79067…=24.37369…u4​=4.43910…
Δu4​=∣4.43910…−4.43911…∣=7.24246E−6Δu4​=7.24246E−6
u5​=4.43910…:Δu5​=2.11568E−11
f(u4​)=4.43910…3−3.48638…⋅4.43910…2−3.79067…⋅4.43910…−1.94696…=5.15667E−10f′(u4​)=3⋅4.43910…2−6.97276…⋅4.43910…−3.79067…=24.37355…u5​=4.43910…
Δu5​=∣4.43910…−4.43910…∣=2.11568E−11Δu5​=2.11568E−11
u≈4.43910…
Apply long division:u−4.43910…u3−3.48638…u2−3.79067…u−1.94696…​=u2+0.95272…u+0.43859…
u2+0.95272…u+0.43859…≈0
Find one solution for u2+0.95272…u+0.43859…=0 using Newton-Raphson:No Solution for u∈R
u2+0.95272…u+0.43859…=0
Newton-Raphson Approximation Definition
f(u)=u2+0.95272…u+0.43859…
Find f′(u):2u+0.95272…
dud​(u2+0.95272…u+0.43859…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(u2)+dud​(0.95272…u)+dud​(0.43859…)
dud​(u2)=2u
dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2u2−1
Simplify=2u
dud​(0.95272…u)=0.95272…
dud​(0.95272…u)
Take the constant out: (a⋅f)′=a⋅f′=0.95272…dudu​
Apply the common derivative: dudu​=1=0.95272…⋅1
Simplify=0.95272…
dud​(0.43859…)=0
dud​(0.43859…)
Derivative of a constant: dxd​(a)=0=0
=2u+0.95272…+0
Simplify=2u+0.95272…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=−0.46035…:Δu1​=0.46035…
f(u0​)=02+0.95272…⋅0+0.43859…=0.43859…f′(u0​)=2⋅0+0.95272…=0.95272…u1​=−0.46035…
Δu1​=∣−0.46035…−0∣=0.46035…Δu1​=0.46035…
u2​=−7.07923…:Δu2​=6.61887…
f(u1​)=(−0.46035…)2+0.95272…(−0.46035…)+0.43859…=0.21192…f′(u1​)=2(−0.46035…)+0.95272…=0.03201…u2​=−7.07923…
Δu2​=∣−7.07923…−(−0.46035…)∣=6.61887…Δu2​=6.61887…
u3​=−3.76176…:Δu3​=3.31746…
f(u2​)=(−7.07923…)2+0.95272…(−7.07923…)+0.43859…=43.80952…f′(u2​)=2(−7.07923…)+0.95272…=−13.20573…u3​=−3.76176…
Δu3​=∣−3.76176…−(−7.07923…)∣=3.31746…Δu3​=3.31746…
u4​=−2.08685…:Δu4​=1.67491…
f(u3​)=(−3.76176…)2+0.95272…(−3.76176…)+0.43859…=11.00555…f′(u3​)=2(−3.76176…)+0.95272…=−6.57081…u4​=−2.08685…
Δu4​=∣−2.08685…−(−3.76176…)∣=1.67491…Δu4​=1.67491…
u5​=−1.21589…:Δu5​=0.87096…
f(u4​)=(−2.08685…)2+0.95272…(−2.08685…)+0.43859…=2.80534…f′(u4​)=2(−2.08685…)+0.95272…=−3.22097…u5​=−1.21589…
Δu5​=∣−1.21589…−(−2.08685…)∣=0.87096…Δu5​=0.87096…
u6​=−0.70301…:Δu6​=0.51287…
f(u5​)=(−1.21589…)2+0.95272…(−1.21589…)+0.43859…=0.75857…f′(u5​)=2(−1.21589…)+0.95272…=−1.47905…u6​=−0.70301…
Δu6​=∣−0.70301…−(−1.21589…)∣=0.51287…Δu6​=0.51287…
u7​=−0.12274…:Δu7​=0.58027…
f(u6​)=(−0.70301…)2+0.95272…(−0.70301…)+0.43859…=0.26304…f′(u6​)=2(−0.70301…)+0.95272…=−0.45330…u7​=−0.12274…
Δu7​=∣−0.12274…−(−0.70301…)∣=0.58027…Δu7​=0.58027…
u8​=−0.59883…:Δu8​=0.47609…
f(u7​)=(−0.12274…)2+0.95272…(−0.12274…)+0.43859…=0.33672…f′(u7​)=2(−0.12274…)+0.95272…=0.70724…u8​=−0.59883…
Δu8​=∣−0.59883…−(−0.12274…)∣=0.47609…Δu8​=0.47609…
u9​=0.32653…:Δu9​=0.92537…
f(u8​)=(−0.59883…)2+0.95272…(−0.59883…)+0.43859…=0.22667…f′(u8​)=2(−0.59883…)+0.95272…=−0.24495…u9​=0.32653…
Δu9​=∣0.32653…−(−0.59883…)∣=0.92537…Δu9​=0.92537…
u10​=−0.20673…:Δu10​=0.53326…
f(u9​)=0.32653…2+0.95272…⋅0.32653…+0.43859…=0.85631…f′(u9​)=2⋅0.32653…+0.95272…=1.60579…u10​=−0.20673…
Δu10​=∣−0.20673…−0.32653…∣=0.53326…Δu10​=0.53326…
u11​=−0.73406…:Δu11​=0.52733…
f(u10​)=(−0.20673…)2+0.95272…(−0.20673…)+0.43859…=0.28437…f′(u10​)=2(−0.20673…)+0.95272…=0.53926…u11​=−0.73406…
Δu11​=∣−0.73406…−(−0.20673…)∣=0.52733…Δu11​=0.52733…
u12​=−0.19452…:Δu12​=0.53954…
f(u11​)=(−0.73406…)2+0.95272…(−0.73406…)+0.43859…=0.27807…f′(u11​)=2(−0.73406…)+0.95272…=−0.51539…u12​=−0.19452…
Δu12​=∣−0.19452…−(−0.73406…)∣=0.53954…Δu12​=0.53954…
Cannot find solution
The solutions areu≈0.51361…,u≈4.43910…
u≈0.51361…,u≈4.43910…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 4u2(1−u2)2​−u and compare to zero
Solve 4u2=0:u=0
4u2=0
Divide both sides by 4
4u2=0
Divide both sides by 4
4u2=0
Divide both sides by 444u2​=40​
Simplifyu2=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈0.51361…,u≈4.43910…
Substitute back u=tan(u)tan(u)≈0.51361…,tan(u)≈4.43910…
tan(u)≈0.51361…,tan(u)≈4.43910…
tan(u)=0.51361…:u=arctan(0.51361…)+πn
tan(u)=0.51361…
Apply trig inverse properties
tan(u)=0.51361…
General solutions for tan(u)=0.51361…tan(x)=a⇒x=arctan(a)+πnu=arctan(0.51361…)+πn
u=arctan(0.51361…)+πn
tan(u)=4.43910…:u=arctan(4.43910…)+πn
tan(u)=4.43910…
Apply trig inverse properties
tan(u)=4.43910…
General solutions for tan(u)=4.43910…tan(x)=a⇒x=arctan(a)+πnu=arctan(4.43910…)+πn
u=arctan(4.43910…)+πn
Combine all the solutionsu=arctan(0.51361…)+πn,u=arctan(4.43910…)+πn
Substitute back u=2x​
2x​=arctan(0.51361…)+πn:x=2arctan(0.51361…)+2πn
2x​=arctan(0.51361…)+πn
Multiply both sides by 2
2x​=arctan(0.51361…)+πn
Multiply both sides by 222x​=2arctan(0.51361…)+2πn
Simplifyx=2arctan(0.51361…)+2πn
x=2arctan(0.51361…)+2πn
2x​=arctan(4.43910…)+πn:x=2arctan(4.43910…)+2πn
2x​=arctan(4.43910…)+πn
Multiply both sides by 2
2x​=arctan(4.43910…)+πn
Multiply both sides by 222x​=2arctan(4.43910…)+2πn
Simplifyx=2arctan(4.43910…)+2πn
x=2arctan(4.43910…)+2πn
x=2arctan(0.51361…)+2πn,x=2arctan(4.43910…)+2πn
Show solutions in decimal formx=2⋅0.47448…+2πn,x=2⋅1.34922…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)= 15/21cos(t)= 3/53+4cos(2x)+2cos(4x)=0cos(θ)=-4/5 ,sin(2θ),180<θ<2702-2sin^2(3x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for cot^2(x)=tan(x/2) ?

    The general solution for cot^2(x)=tan(x/2) is x=2*0.47448…+2pin,x=2*1.34922…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024