Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(x)sin(x)+cos(x)=sec(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(x)sin(x)+cos(x)=sec(x)

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
sec(x)sin(x)+cos(x)=sec(x)
Subtract sec(x) from both sidessec(x)sin(x)+cos(x)−sec(x)=0
Express with sin, coscos(x)1​sin(x)+cos(x)−cos(x)1​=0
Simplify cos(x)1​sin(x)+cos(x)−cos(x)1​:cos(x)sin(x)−1+cos2(x)​
cos(x)1​sin(x)+cos(x)−cos(x)1​
cos(x)1​sin(x)=cos(x)sin(x)​
cos(x)1​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)1⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=cos(x)sin(x)​
=cos(x)sin(x)​+cos(x)−cos(x)1​
Combine the fractions cos(x)sin(x)​−cos(x)1​:cos(x)sin(x)−1​
Apply rule ca​±cb​=ca±b​=cos(x)sin(x)−1​
=cos(x)sin(x)−1​+cos(x)
Convert element to fraction: cos(x)=cos(x)cos(x)cos(x)​=cos(x)sin(x)−1​+cos(x)cos(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)−1+cos(x)cos(x)​
sin(x)−1+cos(x)cos(x)=sin(x)−1+cos2(x)
sin(x)−1+cos(x)cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=sin(x)−1+cos2(x)
=cos(x)sin(x)−1+cos2(x)​
cos(x)sin(x)−1+cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0sin(x)−1+cos2(x)=0
Subtract cos2(x) from both sidessin(x)−1=−cos2(x)
Square both sides(sin(x)−1)2=(−cos2(x))2
Subtract (−cos2(x))2 from both sides(sin(x)−1)2−cos4(x)=0
Factor (sin(x)−1)2−cos4(x):(sin(x)−1+cos2(x))(sin(x)−1−cos2(x))
(sin(x)−1)2−cos4(x)
Apply exponent rule: abc=(ab)ccos4(x)=(cos2(x))2=(sin(x)−1)2−(cos2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(sin(x)−1)2−(cos2(x))2=((sin(x)−1)+cos2(x))((sin(x)−1)−cos2(x))=((sin(x)−1)+cos2(x))((sin(x)−1)−cos2(x))
Refine=(cos2(x)+sin(x)−1)(sin(x)−cos2(x)−1)
(sin(x)−1+cos2(x))(sin(x)−1−cos2(x))=0
Solving each part separatelysin(x)−1+cos2(x)=0orsin(x)−1−cos2(x)=0
sin(x)−1+cos2(x)=0:x=2πn,x=π+2πn,x=2π​+2πn
sin(x)−1+cos2(x)=0
Rewrite using trig identities
−1+cos2(x)+sin(x)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−cos2(x)=sin2(x)=sin(x)−sin2(x)
sin(x)−sin2(x)=0
Solve by substitution
sin(x)−sin2(x)=0
Let: sin(x)=uu−u2=0
u−u2=0:u=0,u=1
u−u2=0
Write in the standard form ax2+bx+c=0−u2+u=0
Solve with the quadratic formula
−u2+u=0
Quadratic Equation Formula:
For a=−1,b=1,c=0u1,2​=2(−1)−1±12−4(−1)⋅0​​
u1,2​=2(−1)−1±12−4(−1)⋅0​​
12−4(−1)⋅0​=1
12−4(−1)⋅0​
Apply rule 1a=112=1=1−4(−1)⋅0​
Apply rule −(−a)=a=1+4⋅1⋅0​
Apply rule 0⋅a=0=1+0​
Add the numbers: 1+0=1=1​
Apply rule 1​=1=1
u1,2​=2(−1)−1±1​
Separate the solutionsu1​=2(−1)−1+1​,u2​=2(−1)−1−1​
u=2(−1)−1+1​:0
2(−1)−1+1​
Remove parentheses: (−a)=−a=−2⋅1−1+1​
Add/Subtract the numbers: −1+1=0=−2⋅10​
Multiply the numbers: 2⋅1=2=−20​
Apply the fraction rule: −ba​=−ba​=−20​
Apply rule a0​=0,a=0=−0
=0
u=2(−1)−1−1​:1
2(−1)−1−1​
Remove parentheses: (−a)=−a=−2⋅1−1−1​
Subtract the numbers: −1−1=−2=−2⋅1−2​
Multiply the numbers: 2⋅1=2=−2−2​
Apply the fraction rule: −b−a​=ba​=22​
Apply rule aa​=1=1
The solutions to the quadratic equation are:u=0,u=1
Substitute back u=sin(x)sin(x)=0,sin(x)=1
sin(x)=0,sin(x)=1
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=2π​+2πn
sin(x)−1−cos2(x)=0:x=2π​+2πn
sin(x)−1−cos2(x)=0
Rewrite using trig identities
−1−cos2(x)+sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−1−(1−sin2(x))+sin(x)
Simplify −1−(1−sin2(x))+sin(x):sin2(x)+sin(x)−2
−1−(1−sin2(x))+sin(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=−1−1+sin2(x)+sin(x)
Subtract the numbers: −1−1=−2=sin2(x)+sin(x)−2
=sin2(x)+sin(x)−2
−2+sin(x)+sin2(x)=0
Solve by substitution
−2+sin(x)+sin2(x)=0
Let: sin(x)=u−2+u+u2=0
−2+u+u2=0:u=1,u=−2
−2+u+u2=0
Write in the standard form ax2+bx+c=0u2+u−2=0
Solve with the quadratic formula
u2+u−2=0
Quadratic Equation Formula:
For a=1,b=1,c=−2u1,2​=2⋅1−1±12−4⋅1⋅(−2)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−2)​​
12−4⋅1⋅(−2)​=3
12−4⋅1⋅(−2)​
Apply rule 1a=112=1=1−4⋅1⋅(−2)​
Apply rule −(−a)=a=1+4⋅1⋅2​
Multiply the numbers: 4⋅1⋅2=8=1+8​
Add the numbers: 1+8=9=9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
u1,2​=2⋅1−1±3​
Separate the solutionsu1​=2⋅1−1+3​,u2​=2⋅1−1−3​
u=2⋅1−1+3​:1
2⋅1−1+3​
Add/Subtract the numbers: −1+3=2=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
u=2⋅1−1−3​:−2
2⋅1−1−3​
Subtract the numbers: −1−3=−4=2⋅1−4​
Multiply the numbers: 2⋅1=2=2−4​
Apply the fraction rule: b−a​=−ba​=−24​
Divide the numbers: 24​=2=−2
The solutions to the quadratic equation are:u=1,u=−2
Substitute back u=sin(x)sin(x)=1,sin(x)=−2
sin(x)=1,sin(x)=−2
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−2:No Solution
sin(x)=−2
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=2π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=2π​+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sec(x)sin(x)+cos(x)=sec(x)
Remove the ones that don't agree with the equation.
Check the solution 2πn:True
2πn
Plug in n=12π1
For sec(x)sin(x)+cos(x)=sec(x)plug inx=2π1sec(2π1)sin(2π1)+cos(2π1)=sec(2π1)
Refine1=1
⇒True
Check the solution π+2πn:True
π+2πn
Plug in n=1π+2π1
For sec(x)sin(x)+cos(x)=sec(x)plug inx=π+2π1sec(π+2π1)sin(π+2π1)+cos(π+2π1)=sec(π+2π1)
Refine−1=−1
⇒True
Check the solution 2π​+2πn:True
2π​+2πn
Plug in n=12π​+2π1
For sec(x)sin(x)+cos(x)=sec(x)plug inx=2π​+2π1sec(2π​+2π1)sin(2π​+2π1)+cos(2π​+2π1)=sec(2π​+2π1)
Refine∞=∞
⇒True
x=2πn,x=π+2πn,x=2π​+2πn
Since the equation is undefined for:2π​+2πnx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)+4csc(x)+5=0,0<= x<= 2pir=asin(3x)sin(x)= 18/25cos^2(t)=0sin(x)= 18/12

Frequently Asked Questions (FAQ)

  • What is the general solution for sec(x)sin(x)+cos(x)=sec(x) ?

    The general solution for sec(x)sin(x)+cos(x)=sec(x) is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024