Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(2θ)-3-6/(sin(2θ)-1)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(2θ)−3−sin(2θ)−16​=0

Solution

θ=127π​+πn,θ=1211π​+πn
+1
Degrees
θ=105∘+180∘n,θ=165∘+180∘n
Solution steps
2sin(2θ)−3−sin(2θ)−16​=0
Solve by substitution
2sin(2θ)−3−sin(2θ)−16​=0
Let: sin(2θ)=u2u−3−u−16​=0
2u−3−u−16​=0:u=3,u=−21​
2u−3−u−16​=0
Multiply both sides by u−1
2u−3−u−16​=0
Multiply both sides by u−12u(u−1)−3(u−1)−u−16​(u−1)=0⋅(u−1)
Simplify
2u(u−1)−3(u−1)−u−16​(u−1)=0⋅(u−1)
Simplify −u−16​(u−1):−6
−u−16​(u−1)
Multiply fractions: a⋅cb​=ca⋅b​=−u−16(u−1)​
Cancel the common factor: u−1=−6
Simplify 0⋅(u−1):0
0⋅(u−1)
Apply rule 0⋅a=0=0
2u(u−1)−3(u−1)−6=0
2u(u−1)−3(u−1)−6=0
2u(u−1)−3(u−1)−6=0
Solve 2u(u−1)−3(u−1)−6=0:u=3,u=−21​
2u(u−1)−3(u−1)−6=0
Expand 2u(u−1)−3(u−1)−6:2u2−5u−3
2u(u−1)−3(u−1)−6
Expand 2u(u−1):2u2−2u
2u(u−1)
Apply the distributive law: a(b−c)=ab−aca=2u,b=u,c=1=2uu−2u⋅1
=2uu−2⋅1⋅u
Simplify 2uu−2⋅1⋅u:2u2−2u
2uu−2⋅1⋅u
2uu=2u2
2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2u1+1
Add the numbers: 1+1=2=2u2
2⋅1⋅u=2u
2⋅1⋅u
Multiply the numbers: 2⋅1=2=2u
=2u2−2u
=2u2−2u
=2u2−2u−3(u−1)−6
Expand −3(u−1):−3u+3
−3(u−1)
Apply the distributive law: a(b−c)=ab−aca=−3,b=u,c=1=−3u−(−3)⋅1
Apply minus-plus rules−(−a)=a=−3u+3⋅1
Multiply the numbers: 3⋅1=3=−3u+3
=2u2−2u−3u+3−6
Simplify 2u2−2u−3u+3−6:2u2−5u−3
2u2−2u−3u+3−6
Add similar elements: −2u−3u=−5u=2u2−5u+3−6
Add/Subtract the numbers: 3−6=−3=2u2−5u−3
=2u2−5u−3
2u2−5u−3=0
Solve with the quadratic formula
2u2−5u−3=0
Quadratic Equation Formula:
For a=2,b=−5,c=−3u1,2​=2⋅2−(−5)±(−5)2−4⋅2(−3)​​
u1,2​=2⋅2−(−5)±(−5)2−4⋅2(−3)​​
(−5)2−4⋅2(−3)​=7
(−5)2−4⋅2(−3)​
Apply rule −(−a)=a=(−5)2+4⋅2⋅3​
Apply exponent rule: (−a)n=an,if n is even(−5)2=52=52+4⋅2⋅3​
Multiply the numbers: 4⋅2⋅3=24=52+24​
52=25=25+24​
Add the numbers: 25+24=49=49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
u1,2​=2⋅2−(−5)±7​
Separate the solutionsu1​=2⋅2−(−5)+7​,u2​=2⋅2−(−5)−7​
u=2⋅2−(−5)+7​:3
2⋅2−(−5)+7​
Apply rule −(−a)=a=2⋅25+7​
Add the numbers: 5+7=12=2⋅212​
Multiply the numbers: 2⋅2=4=412​
Divide the numbers: 412​=3=3
u=2⋅2−(−5)−7​:−21​
2⋅2−(−5)−7​
Apply rule −(−a)=a=2⋅25−7​
Subtract the numbers: 5−7=−2=2⋅2−2​
Multiply the numbers: 2⋅2=4=4−2​
Apply the fraction rule: b−a​=−ba​=−42​
Cancel the common factor: 2=−21​
The solutions to the quadratic equation are:u=3,u=−21​
u=3,u=−21​
Verify Solutions
Find undefined (singularity) points:u=1
Take the denominator(s) of 2u−3−u−16​ and compare to zero
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
The following points are undefinedu=1
Combine undefined points with solutions:
u=3,u=−21​
Substitute back u=sin(2θ)sin(2θ)=3,sin(2θ)=−21​
sin(2θ)=3,sin(2θ)=−21​
sin(2θ)=3:No Solution
sin(2θ)=3
−1≤sin(x)≤1NoSolution
sin(2θ)=−21​:θ=127π​+πn,θ=1211π​+πn
sin(2θ)=−21​
General solutions for sin(2θ)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2θ=67π​+2πn,2θ=611π​+2πn
2θ=67π​+2πn,2θ=611π​+2πn
Solve 2θ=67π​+2πn:θ=127π​+πn
2θ=67π​+2πn
Divide both sides by 2
2θ=67π​+2πn
Divide both sides by 222θ​=267π​​+22πn​
Simplify
22θ​=267π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 267π​​+22πn​:127π​+πn
267π​​+22πn​
267π​​=127π​
267π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅27π​
Multiply the numbers: 6⋅2=12=127π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=127π​+πn
θ=127π​+πn
θ=127π​+πn
θ=127π​+πn
Solve 2θ=611π​+2πn:θ=1211π​+πn
2θ=611π​+2πn
Divide both sides by 2
2θ=611π​+2πn
Divide both sides by 222θ​=2611π​​+22πn​
Simplify
22θ​=2611π​​+22πn​
Simplify 22θ​:θ
22θ​
Divide the numbers: 22​=1=θ
Simplify 2611π​​+22πn​:1211π​+πn
2611π​​+22πn​
2611π​​=1211π​
2611π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅211π​
Multiply the numbers: 6⋅2=12=1211π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=1211π​+πn
θ=1211π​+πn
θ=1211π​+πn
θ=1211π​+πn
θ=127π​+πn,θ=1211π​+πn
Combine all the solutionsθ=127π​+πn,θ=1211π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(ax)=0cos(x+30)=2cos(x)solvefor x,sec(x)tan(x)=2sqrt(3)4sin(x)+2sqrt(2)=0sin(4x)+sin(2x)=0,0<= x<= 180

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(2θ)-3-6/(sin(2θ)-1)=0 ?

    The general solution for 2sin(2θ)-3-6/(sin(2θ)-1)=0 is θ=(7pi)/(12)+pin,θ=(11pi)/(12)+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024