Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

49.55*sqrt(1-sin^2(θ))-30sin(θ)=1.225

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

49.55⋅1−sin2(θ)​−30sin(θ)=1.225

Solution

θ=1.00522…+2πn,θ=π−1.00522…+2πn
+1
Degrees
θ=57.59542…∘+360∘n,θ=122.40457…∘+360∘n
Solution steps
49.551−sin2(θ)​−30sin(θ)=1.225
Solve by substitution
49.551−sin2(θ)​−30sin(θ)=1.225
Let: sin(θ)=u49.551−u2​−30u=1.225
49.551−u2​−30u=1.225:u=2−0.02190…+2.92573…​​
49.551−u2​−30u=1.225
Remove square roots
49.551−u2​−30u=1.225
Add 30u to both sides49.551−u2​−30u+30u=1.225+30u
Simplify49.551−u2​=1.225+30u
Square both sides:2455.2025−2455.2025u2=1.500625+73.5u+900u2
49.551−u2​−30u=1.225
(49.551−u2​)2=(1.225+30u)2
Expand (49.551−u2​)2:2455.2025−2455.2025u2
(49.551−u2​)2
Apply exponent rule: (a⋅b)n=anbn=49.552(1−u2​)2
(1−u2​)2:1−u2
Apply radical rule: a​=a21​=((1−u2)21​)2
Apply exponent rule: (ab)c=abc=(1−u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−u2
=49.552(1−u2)
49.552=2455.2025=2455.2025(1−u2)
Expand 2455.2025(1−u2):2455.2025−2455.2025u2
2455.2025(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2455.2025,b=1,c=u2=2455.2025⋅1−2455.2025u2
=1⋅2455.2025−2455.2025u2
Multiply the numbers: 1⋅2455.2025=2455.2025=2455.2025−2455.2025u2
=2455.2025−2455.2025u2
Expand (1.225+30u)2:1.500625+73.5u+900u2
(1.225+30u)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=1.225,b=30u
=1.2252+2⋅1.225⋅30u+(30u)2
Simplify 1.2252+2⋅1.225⋅30u+(30u)2:1.500625+73.5u+900u2
1.2252+2⋅1.225⋅30u+(30u)2
1.2252=1.500625
1.2252
1.2252=1.500625=1.500625
2⋅1.225⋅30u=73.5u
2⋅1.225⋅30u
Multiply the numbers: 2⋅1.225⋅30=73.5=73.5u
(30u)2=900u2
(30u)2
Apply exponent rule: (a⋅b)n=anbn=302u2
302=900=900u2
=1.500625+73.5u+900u2
=1.500625+73.5u+900u2
2455.2025−2455.2025u2=1.500625+73.5u+900u2
2455.2025−2455.2025u2=1.500625+73.5u+900u2
2455.2025−2455.2025u2=1.500625+73.5u+900u2
Solve 2455.2025−2455.2025u2=1.500625+73.5u+900u2:u=2−0.02190…+2.92573…​​,u=2−0.02190…−2.92573…​​
2455.2025−2455.2025u2=1.500625+73.5u+900u2
Switch sides1.500625+73.5u+900u2=2455.2025−2455.2025u2
Move 2455.2025u2to the left side
1.500625+73.5u+900u2=2455.2025−2455.2025u2
Add 2455.2025u2 to both sides1.500625+73.5u+900u2+2455.2025u2=2455.2025−2455.2025u2+2455.2025u2
Simplify1.500625+73.5u+3355.2025u2=2455.2025
1.500625+73.5u+3355.2025u2=2455.2025
Move 2455.2025to the left side
1.500625+73.5u+3355.2025u2=2455.2025
Subtract 2455.2025 from both sides1.500625+73.5u+3355.2025u2−2455.2025=2455.2025−2455.2025
Simplify3355.2025u2+73.5u−2453.701875=0
3355.2025u2+73.5u−2453.701875=0
Divide both sides by 3355.20253355.20253355.2025u2​+3355.202573.5u​−3355.20252453.701875​=3355.20250​
Write in the standard form ax2+bx+c=0u2+0.02190…u−0.73131…=0
Solve with the quadratic formula
u2+0.02190…u−0.73131…=0
Quadratic Equation Formula:
For a=1,b=0.02190…,c=−0.73131…u1,2​=2⋅1−0.02190…±0.02190…2−4⋅1⋅(−0.73131…)​​
u1,2​=2⋅1−0.02190…±0.02190…2−4⋅1⋅(−0.73131…)​​
0.02190…2−4⋅1⋅(−0.73131…)​=2.92573…​
0.02190…2−4⋅1⋅(−0.73131…)​
Apply rule −(−a)=a=0.02190…2+4⋅1⋅0.73131…​
Multiply the numbers: 4⋅1⋅0.73131…=2.92525…=0.02190…2+2.92525…​
0.02190…2=0.00047…=0.00047…+2.92525…​
Add the numbers: 0.00047…+2.92525…=2.92573…=2.92573…​
u1,2​=2⋅1−0.02190…±2.92573…​​
Separate the solutionsu1​=2⋅1−0.02190…+2.92573…​​,u2​=2⋅1−0.02190…−2.92573…​​
u=2⋅1−0.02190…+2.92573…​​:2−0.02190…+2.92573…​​
2⋅1−0.02190…+2.92573…​​
Multiply the numbers: 2⋅1=2=2−0.02190…+2.92573…​​
u=2⋅1−0.02190…−2.92573…​​:2−0.02190…−2.92573…​​
2⋅1−0.02190…−2.92573…​​
Multiply the numbers: 2⋅1=2=2−0.02190…−2.92573…​​
The solutions to the quadratic equation are:u=2−0.02190…+2.92573…​​,u=2−0.02190…−2.92573…​​
u=2−0.02190…+2.92573…​​,u=2−0.02190…−2.92573…​​
Verify Solutions:u=2−0.02190…+2.92573…​​True,u=2−0.02190…−2.92573…​​False
Check the solutions by plugging them into 49.551−u2​−30u=1.225
Remove the ones that don't agree with the equation.
Plug in u=2−0.02190…+2.92573…​​:True
49.551−(2−0.02190…+2.92573…​​)2​−30(2−0.02190…+2.92573…​​)=1.225
49.551−(2−0.02190…+2.92573…​​)2​−30(2−0.02190…+2.92573…​​)=1.225
49.551−(2−0.02190…+2.92573…​​)2​−30(2−0.02190…+2.92573…​​)
Remove parentheses: (a)=a=49.551−(2−0.02190…+2.92573…​​)2​−30⋅2−0.02190…+2.92573…​​
49.551−(2−0.02190…+2.92573…​​)2​=49.550.28718…​
49.551−(2−0.02190…+2.92573…​​)2​
1−(2−0.02190…+2.92573…​​)2​=0.28718…​
1−(2−0.02190…+2.92573…​​)2​
(2−0.02190…+2.92573…​​)2=0.71281…
(2−0.02190…+2.92573…​​)2
2−0.02190…+2.92573…​​=21.68857…​
2−0.02190…+2.92573…​​
2.92573…​=1.71047…=2−0.02190…+1.71047…​
Add/Subtract the numbers: −0.02190…+1.71047…=1.68857…=21.68857…​
=(21.68857…​)2
Apply exponent rule: (ba​)c=bcac​=221.68857…2​
1.68857…2=2.85126…=222.85126…​
22=4=42.85126…​
Divide the numbers: 42.85126…​=0.71281…=0.71281…
=1−0.71281…​
Subtract the numbers: 1−0.71281…=0.28718…=0.28718…​
=49.550.28718…​
30⋅2−0.02190…+2.92573…​​=25.32855…
30⋅2−0.02190…+2.92573…​​
2−0.02190…+2.92573…​​=21.68857…​
2−0.02190…+2.92573…​​
2.92573…​=1.71047…=2−0.02190…+1.71047…​
Add/Subtract the numbers: −0.02190…+1.71047…=1.68857…=21.68857…​
=30⋅21.68857…​
Multiply fractions: a⋅cb​=ca⋅b​=21.68857…⋅30​
Multiply the numbers: 1.68857…⋅30=50.65711…=250.65711…​
Divide the numbers: 250.65711…​=25.32855…=25.32855…
=49.550.28718…​−25.32855…
49.550.28718…​=26.55355…
49.550.28718…​
0.28718…​=0.53589…=0.53589…⋅49.55
Multiply the numbers: 49.55⋅0.53589…=26.55355…=26.55355…
=26.55355…−25.32855…
Subtract the numbers: 26.55355…−25.32855…=1.225=1.225
1.225=1.225
True
Plug in u=2−0.02190…−2.92573…​​:False
49.551−(2−0.02190…−2.92573…​​)2​−30(2−0.02190…−2.92573…​​)=1.225
49.551−(2−0.02190…−2.92573…​​)2​−30(2−0.02190…−2.92573…​​)=50.74648…
49.551−(2−0.02190…−2.92573…​​)2​−30(2−0.02190…−2.92573…​​)
Remove parentheses: (a)=a=49.551−(2−0.02190…−2.92573…​​)2​−30⋅2−0.02190…−2.92573…​​
49.551−(2−0.02190…−2.92573…​​)2​=49.550.24971…​
49.551−(2−0.02190…−2.92573…​​)2​
1−(2−0.02190…−2.92573…​​)2​=0.24971…​
1−(2−0.02190…−2.92573…​​)2​
(2−0.02190…−2.92573…​​)2=0.75028…
(2−0.02190…−2.92573…​​)2
2−0.02190…−2.92573…​​=−21.73238…​
2−0.02190…−2.92573…​​
2.92573…​=1.71047…=2−0.02190…−1.71047…​
Subtract the numbers: −0.02190…−1.71047…=−1.73238…=2−1.73238…​
Apply the fraction rule: b−a​=−ba​=−21.73238…​
=(−21.73238…​)2
Apply exponent rule: (−a)n=an,if n is even(−21.73238…​)2=(21.73238…​)2=(21.73238…​)2
Apply exponent rule: (ba​)c=bcac​=221.73238…2​
1.73238…2=3.00115…=223.00115…​
22=4=43.00115…​
Divide the numbers: 43.00115…​=0.75028…=0.75028…
=1−0.75028…​
Subtract the numbers: 1−0.75028…=0.24971…=0.24971…​
=49.550.24971…​
30⋅2−0.02190…−2.92573…​​=−25.98574…
30⋅2−0.02190…−2.92573…​​
2−0.02190…−2.92573…​​=−21.73238…​
2−0.02190…−2.92573…​​
2.92573…​=1.71047…=2−0.02190…−1.71047…​
Subtract the numbers: −0.02190…−1.71047…=−1.73238…=2−1.73238…​
Apply the fraction rule: b−a​=−ba​=−21.73238…​
=30(−21.73238…​)
Remove parentheses: (−a)=−a=−30⋅21.73238…​
Multiply fractions: a⋅cb​=ca⋅b​=−21.73238…⋅30​
Multiply the numbers: 1.73238…⋅30=51.97148…=−251.97148…​
Divide the numbers: 251.97148…​=25.98574…=−25.98574…
=49.550.24971…​−(−25.98574…)
Apply rule −(−a)=a=49.550.24971…​+25.98574…
49.550.24971…​=24.76074…
49.550.24971…​
0.24971…​=0.49971…=0.49971…⋅49.55
Multiply the numbers: 49.55⋅0.49971…=24.76074…=24.76074…
=24.76074…+25.98574…
Add the numbers: 24.76074…+25.98574…=50.74648…=50.74648…
50.74648…=1.225
False
The solution isu=2−0.02190…+2.92573…​​
Substitute back u=sin(θ)sin(θ)=2−0.02190…+2.92573…​​
sin(θ)=2−0.02190…+2.92573…​​
sin(θ)=2−0.02190…+2.92573…​​:θ=arcsin(2−0.02190…+2.92573…​​)+2πn,θ=π−arcsin(2−0.02190…+2.92573…​​)+2πn
sin(θ)=2−0.02190…+2.92573…​​
Apply trig inverse properties
sin(θ)=2−0.02190…+2.92573…​​
General solutions for sin(θ)=2−0.02190…+2.92573…​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(2−0.02190…+2.92573…​​)+2πn,θ=π−arcsin(2−0.02190…+2.92573…​​)+2πn
θ=arcsin(2−0.02190…+2.92573…​​)+2πn,θ=π−arcsin(2−0.02190…+2.92573…​​)+2πn
Combine all the solutionsθ=arcsin(2−0.02190…+2.92573…​​)+2πn,θ=π−arcsin(2−0.02190…+2.92573…​​)+2πn
Show solutions in decimal formθ=1.00522…+2πn,θ=π−1.00522…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x)+sin(x)-1=0arctan(e^x)=04sin^2(x)+1=4sin(x)-0.6=sin(30t)tan(x)=(6.1)/4

Frequently Asked Questions (FAQ)

  • What is the general solution for 49.55*sqrt(1-sin^2(θ))-30sin(θ)=1.225 ?

    The general solution for 49.55*sqrt(1-sin^2(θ))-30sin(θ)=1.225 is θ=1.00522…+2pin,θ=pi-1.00522…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024