Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-15sin(x)-8cos(x)=10

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−15sin(x)−8cos(x)=10

Solution

x=−3.00267…+2πn,x=2π−1.11883…+2πn
+1
Degrees
x=−172.04060…∘+360∘n,x=295.89563…∘+360∘n
Solution steps
−15sin(x)−8cos(x)=10
Add 8cos(x) to both sides−15sin(x)=10+8cos(x)
Square both sides(−15sin(x))2=(10+8cos(x))2
Subtract (10+8cos(x))2 from both sides225sin2(x)−100−160cos(x)−64cos2(x)=0
Rewrite using trig identities
−100−160cos(x)+225sin2(x)−64cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−100−160cos(x)+225(1−cos2(x))−64cos2(x)
Simplify −100−160cos(x)+225(1−cos2(x))−64cos2(x):−289cos2(x)−160cos(x)+125
−100−160cos(x)+225(1−cos2(x))−64cos2(x)
Expand 225(1−cos2(x)):225−225cos2(x)
225(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=225,b=1,c=cos2(x)=225⋅1−225cos2(x)
Multiply the numbers: 225⋅1=225=225−225cos2(x)
=−100−160cos(x)+225−225cos2(x)−64cos2(x)
Simplify −100−160cos(x)+225−225cos2(x)−64cos2(x):−289cos2(x)−160cos(x)+125
−100−160cos(x)+225−225cos2(x)−64cos2(x)
Add similar elements: −225cos2(x)−64cos2(x)=−289cos2(x)=−100−160cos(x)+225−289cos2(x)
Group like terms=−160cos(x)−289cos2(x)−100+225
Add/Subtract the numbers: −100+225=125=−289cos2(x)−160cos(x)+125
=−289cos2(x)−160cos(x)+125
=−289cos2(x)−160cos(x)+125
125−160cos(x)−289cos2(x)=0
Solve by substitution
125−160cos(x)−289cos2(x)=0
Let: cos(x)=u125−160u−289u2=0
125−160u−289u2=0:u=−2895(16+921​)​,u=2895(921​−16)​
125−160u−289u2=0
Write in the standard form ax2+bx+c=0−289u2−160u+125=0
Solve with the quadratic formula
−289u2−160u+125=0
Quadratic Equation Formula:
For a=−289,b=−160,c=125u1,2​=2(−289)−(−160)±(−160)2−4(−289)⋅125​​
u1,2​=2(−289)−(−160)±(−160)2−4(−289)⋅125​​
(−160)2−4(−289)⋅125​=9021​
(−160)2−4(−289)⋅125​
Apply rule −(−a)=a=(−160)2+4⋅289⋅125​
Apply exponent rule: (−a)n=an,if n is even(−160)2=1602=1602+4⋅289⋅125​
Multiply the numbers: 4⋅289⋅125=144500=1602+144500​
1602=25600=25600+144500​
Add the numbers: 25600+144500=170100=170100​
Prime factorization of 170100:22⋅35⋅52⋅7
170100
=35⋅22⋅52⋅7​
Apply exponent rule: ab+c=ab⋅ac=34⋅22⋅52⋅3⋅7​
Apply radical rule: =22​34​52​3⋅7​
Apply radical rule: 22​=2=234​52​3⋅7​
Apply radical rule: 34​=324​=32=32⋅252​3⋅7​
Apply radical rule: 52​=5=32⋅2⋅53⋅7​
Refine=9021​
u1,2​=2(−289)−(−160)±9021​​
Separate the solutionsu1​=2(−289)−(−160)+9021​​,u2​=2(−289)−(−160)−9021​​
u=2(−289)−(−160)+9021​​:−2895(16+921​)​
2(−289)−(−160)+9021​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅289160+9021​​
Multiply the numbers: 2⋅289=578=−578160+9021​​
Apply the fraction rule: −ba​=−ba​=−578160+9021​​
Cancel 578160+9021​​:2895(16+921​)​
578160+9021​​
Factor 160+9021​:10(16+921​)
160+9021​
Rewrite as=10⋅16+10⋅921​
Factor out common term 10=10(16+921​)
=57810(16+921​)​
Cancel the common factor: 2=2895(16+921​)​
=−2895(16+921​)​
u=2(−289)−(−160)−9021​​:2895(921​−16)​
2(−289)−(−160)−9021​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅289160−9021​​
Multiply the numbers: 2⋅289=578=−578160−9021​​
Apply the fraction rule: −b−a​=ba​160−9021​=−(9021​−160)=5789021​−160​
Factor 9021​−160:10(921​−16)
9021​−160
Rewrite as=10⋅921​−10⋅16
Factor out common term 10=10(921​−16)
=57810(921​−16)​
Cancel the common factor: 2=2895(921​−16)​
The solutions to the quadratic equation are:u=−2895(16+921​)​,u=2895(921​−16)​
Substitute back u=cos(x)cos(x)=−2895(16+921​)​,cos(x)=2895(921​−16)​
cos(x)=−2895(16+921​)​,cos(x)=2895(921​−16)​
cos(x)=−2895(16+921​)​:x=arccos(−2895(16+921​)​)+2πn,x=−arccos(−2895(16+921​)​)+2πn
cos(x)=−2895(16+921​)​
Apply trig inverse properties
cos(x)=−2895(16+921​)​
General solutions for cos(x)=−2895(16+921​)​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−2895(16+921​)​)+2πn,x=−arccos(−2895(16+921​)​)+2πn
x=arccos(−2895(16+921​)​)+2πn,x=−arccos(−2895(16+921​)​)+2πn
cos(x)=2895(921​−16)​:x=arccos(2895(921​−16)​)+2πn,x=2π−arccos(2895(921​−16)​)+2πn
cos(x)=2895(921​−16)​
Apply trig inverse properties
cos(x)=2895(921​−16)​
General solutions for cos(x)=2895(921​−16)​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(2895(921​−16)​)+2πn,x=2π−arccos(2895(921​−16)​)+2πn
x=arccos(2895(921​−16)​)+2πn,x=2π−arccos(2895(921​−16)​)+2πn
Combine all the solutionsx=arccos(−2895(16+921​)​)+2πn,x=−arccos(−2895(16+921​)​)+2πn,x=arccos(2895(921​−16)​)+2πn,x=2π−arccos(2895(921​−16)​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into −15sin(x)−8cos(x)=10
Remove the ones that don't agree with the equation.
Check the solution arccos(−2895(16+921​)​)+2πn:False
arccos(−2895(16+921​)​)+2πn
Plug in n=1arccos(−2895(16+921​)​)+2π1
For −15sin(x)−8cos(x)=10plug inx=arccos(−2895(16+921​)​)+2π1−15sin(arccos(−2895(16+921​)​)+2π1)−8cos(arccos(−2895(16+921​)​)+2π1)=10
Refine5.84586…=10
⇒False
Check the solution −arccos(−2895(16+921​)​)+2πn:True
−arccos(−2895(16+921​)​)+2πn
Plug in n=1−arccos(−2895(16+921​)​)+2π1
For −15sin(x)−8cos(x)=10plug inx=−arccos(−2895(16+921​)​)+2π1−15sin(−arccos(−2895(16+921​)​)+2π1)−8cos(−arccos(−2895(16+921​)​)+2π1)=10
Refine10=10
⇒True
Check the solution arccos(2895(921​−16)​)+2πn:False
arccos(2895(921​−16)​)+2πn
Plug in n=1arccos(2895(921​−16)​)+2π1
For −15sin(x)−8cos(x)=10plug inx=arccos(2895(921​−16)​)+2π1−15sin(arccos(2895(921​−16)​)+2π1)−8cos(arccos(2895(921​−16)​)+2π1)=10
Refine−16.98773…=10
⇒False
Check the solution 2π−arccos(2895(921​−16)​)+2πn:True
2π−arccos(2895(921​−16)​)+2πn
Plug in n=12π−arccos(2895(921​−16)​)+2π1
For −15sin(x)−8cos(x)=10plug inx=2π−arccos(2895(921​−16)​)+2π1−15sin(2π−arccos(2895(921​−16)​)+2π1)−8cos(2π−arccos(2895(921​−16)​)+2π1)=10
Refine10=10
⇒True
x=−arccos(−2895(16+921​)​)+2πn,x=2π−arccos(2895(921​−16)​)+2πn
Show solutions in decimal formx=−3.00267…+2πn,x=2π−1.11883…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-5sec^2(x)+20=01+cos(x)=sqrt(3)*sin(x)cos(x)=(sqrt(6))/3cos(3x)+cos(5x)=0cos(x)cot(x)=cos(x)cot(3x-50)

Frequently Asked Questions (FAQ)

  • What is the general solution for -15sin(x)-8cos(x)=10 ?

    The general solution for -15sin(x)-8cos(x)=10 is x=-3.00267…+2pin,x=2pi-1.11883…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024