Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^4(x)+3sin^2(x)-1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin4(x)+3sin2(x)−1=0

Solution

x=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n,x=210∘+360∘n,x=330∘+360∘n
Solution steps
4sin4(x)+3sin2(x)−1=0
Solve by substitution
4sin4(x)+3sin2(x)−1=0
Let: sin(x)=u4u4+3u2−1=0
4u4+3u2−1=0:u=21​,u=−21​,u=i,u=−i
4u4+3u2−1=0
Rewrite the equation with v=u2 and v2=u44v2+3v−1=0
Solve 4v2+3v−1=0:v=41​,v=−1
4v2+3v−1=0
Solve with the quadratic formula
4v2+3v−1=0
Quadratic Equation Formula:
For a=4,b=3,c=−1v1,2​=2⋅4−3±32−4⋅4(−1)​​
v1,2​=2⋅4−3±32−4⋅4(−1)​​
32−4⋅4(−1)​=5
32−4⋅4(−1)​
Apply rule −(−a)=a=32+4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
v1,2​=2⋅4−3±5​
Separate the solutionsv1​=2⋅4−3+5​,v2​=2⋅4−3−5​
v=2⋅4−3+5​:41​
2⋅4−3+5​
Add/Subtract the numbers: −3+5=2=2⋅42​
Multiply the numbers: 2⋅4=8=82​
Cancel the common factor: 2=41​
v=2⋅4−3−5​:−1
2⋅4−3−5​
Subtract the numbers: −3−5=−8=2⋅4−8​
Multiply the numbers: 2⋅4=8=8−8​
Apply the fraction rule: b−a​=−ba​=−88​
Apply rule aa​=1=−1
The solutions to the quadratic equation are:v=41​,v=−1
v=41​,v=−1
Substitute back v=u2,solve for u
Solve u2=41​:u=21​,u=−21​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
Solve u2=−1:u=i,u=−i
u2=−1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−1​,u=−−1​
Simplify −1​:i
−1​
Apply imaginary number rule: −1​=i=i
Simplify −−1​:−i
−−1​
Apply imaginary number rule: −1​=i=−i
u=i,u=−i
The solutions are
u=21​,u=−21​,u=i,u=−i
Substitute back u=sin(x)sin(x)=21​,sin(x)=−21​,sin(x)=i,sin(x)=−i
sin(x)=21​,sin(x)=−21​,sin(x)=i,sin(x)=−i
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
sin(x)=i:No Solution
sin(x)=i
NoSolution
sin(x)=−i:No Solution
sin(x)=−i
NoSolution
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(tan(x))^5-9tan(x)=02cot^2(x)+2csc^2(x)=1+4csc(x)sin(2θ)=cos(θ),0<= θ<2pi2cos^2(θ)-10=-cos(θ)-91=tan(pi+c)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024