Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tanh(x)= 1/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tanh(x)=21​

Solution

x=21​ln(3)
+1
Degrees
x=31.47292…∘
Solution steps
tanh(x)=21​
Rewrite using trig identities
tanh(x)=21​
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​ex+e−xex−e−x​=21​
ex+e−xex−e−x​=21​
ex+e−xex−e−x​=21​:x=21​ln(3)
ex+e−xex−e−x​=21​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c(ex−e−x)⋅2=(ex+e−x)⋅1
Simplify(ex−e−x)⋅2=ex+e−x
Apply exponent rules
(ex−e−x)⋅2=ex+e−x
Apply exponent rule: abc=(ab)ce−x=(ex)−1(ex−(ex)−1)⋅2=ex+(ex)−1
(ex−(ex)−1)⋅2=ex+(ex)−1
Rewrite the equation with ex=u(u−(u)−1)⋅2=u+(u)−1
Solve (u−u−1)⋅2=u+u−1:u=3​,u=−3​
(u−u−1)⋅2=u+u−1
Refine(u−u1​)⋅2=u+u1​
Simplify (u−u1​)⋅2:2(u−u1​)
(u−u1​)⋅2
Apply the commutative law: (u−u1​)⋅2=2(u−u1​)2(u−u1​)
2(u−u1​)=u+u1​
Multiply both sides by u
2(u−u1​)=u+u1​
Multiply both sides by u2(u−u1​)u=uu+u1​u
Simplify
2(u−u1​)u=uu+u1​u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
2(u−u1​)u=u2+1
2(u−u1​)u=u2+1
2(u−u1​)u=u2+1
Expand 2(u−u1​)u:2u2−2
2(u−u1​)u
=2u(u−u1​)
Apply the distributive law: a(b−c)=ab−aca=2u,b=u,c=u1​=2uu−2uu1​
=2uu−2⋅u1​u
Simplify 2uu−2⋅u1​u:2u2−2
2uu−2⋅u1​u
2uu=2u2
2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2u1+1
Add the numbers: 1+1=2=2u2
2⋅u1​u=2
2⋅u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅2u​
Cancel the common factor: u=1⋅2
Multiply the numbers: 1⋅2=2=2
=2u2−2
=2u2−2
2u2−2=u2+1
Move 2to the right side
2u2−2=u2+1
Add 2 to both sides2u2−2+2=u2+1+2
Simplify2u2=u2+3
2u2=u2+3
Solve 2u2=u2+3:u=3​,u=−3​
2u2=u2+3
Move u2to the left side
2u2=u2+3
Subtract u2 from both sides2u2−u2=u2+3−u2
Simplifyu2=3
u2=3
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=3​,u=−3​
u=3​,u=−3​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u−u−1)2 and compare to zero
u=0
Take the denominator(s) of u+u−1 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=3​,u=−3​
u=3​,u=−3​
Substitute back u=ex,solve for x
Solve ex=3​:x=21​ln(3)
ex=3​
Apply exponent rules
ex=3​
Apply exponent rule: a​=a21​3​=321​ex=321​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(321​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(321​)
Apply log rule: ln(xa)=a⋅ln(x)ln(321​)=21​ln(3)x=21​ln(3)
x=21​ln(3)
Solve ex=−3​:No Solution for x∈R
ex=−3​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=21​ln(3)
Verify Solutions:x=21​ln(3)True
Check the solutions by plugging them into ex+e−xex−e−x​=21​
Remove the ones that don't agree with the equation.
Plug in x=21​ln(3):True
e21​ln(3)+e−21​ln(3)e21​ln(3)−e−21​ln(3)​=21​
e21​ln(3)+e−21​ln(3)e21​ln(3)−e−21​ln(3)​=21​
e21​ln(3)+e−21​ln(3)e21​ln(3)−e−21​ln(3)​
e21​ln(3)=3​
e21​ln(3)
Apply exponent rule: abc=(ab)c=eln(3)​
Apply log rule: aloga​(b)=beln(3)=3=3​
e−21​ln(3)=3−21​
e−21​ln(3)
Apply exponent rule: abc=(ab)c=(eln(3))−21​
Apply log rule: aloga​(b)=beln(3)=3=3−21​
=3​+3−21​e21​ln(3)−e−21​ln(3)​
e21​ln(3)=3​
e21​ln(3)
Apply exponent rule: abc=(ab)c=eln(3)​
Apply log rule: aloga​(b)=beln(3)=3=3​
e−21​ln(3)=3−21​
e−21​ln(3)
Apply exponent rule: abc=(ab)c=(eln(3))−21​
Apply log rule: aloga​(b)=beln(3)=3=3−21​
=3​+3−21​3​−3−21​​
Simplify
3​+3−21​3​−3−21​​
Apply exponent rule: a−b=ab1​3−21​=3​1​=3​+3​1​3​−3−21​​
Apply exponent rule: a−b=ab1​3−21​=3​1​=3​+3​1​3​−3​1​​
Join 3​+3​1​:3​4​
3​+3​1​
Convert element to fraction: 3​=3​3​3​​=3​3​3​​+3​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​3​3​+1​
3​3​+1=4
3​3​+1
Apply radical rule: a​a​=a3​3​=3=3+1
Add the numbers: 3+1=4=4
=3​4​
=3​4​3​−3​1​​
Join 3​−3​1​:3​2​
3​−3​1​
Convert element to fraction: 3​=3​3​3​​=3​3​3​​−3​1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​3​3​−1​
3​3​−1=2
3​3​−1
Apply radical rule: a​a​=a3​3​=3=3−1
Subtract the numbers: 3−1=2=2
=3​2​
=3​4​3​2​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=3​⋅423​​
Cancel the common factor: 3​=42​
Cancel the common factor: 2=21​
=21​
21​=21​
True
The solution isx=21​ln(3)
x=21​ln(3)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(2)cos(x)-sqrt(2)sin(x)=2sin^2(x)-3sin(x)=-2solvefor x,f=arctan(x/(sqrt(1-x^2)))sin(2x)=((8m-2))/5csc(3x)=sin(3x)

Frequently Asked Questions (FAQ)

  • What is the general solution for tanh(x)= 1/2 ?

    The general solution for tanh(x)= 1/2 is x= 1/2 ln(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024