Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

3sin(x)-4cos(x)=-2

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

3sin(x)−4cos(x)=−2

Решение

x=−1.80278…+2πn,x=0.51577…+2πn
+1
Градусы
x=−103.29171…∘+360∘n,x=29.55192…∘+360∘n
Шаги решения
3sin(x)−4cos(x)=−2
Добавьте 4cos(x) к обеим сторонам3sin(x)=−2+4cos(x)
Возведите в квадрат обе части(3sin(x))2=(−2+4cos(x))2
Вычтите (−2+4cos(x))2 с обеих сторон9sin2(x)−4+16cos(x)−16cos2(x)=0
Перепишите используя тригонометрические тождества
−4+16cos(x)−16cos2(x)+9sin2(x)
Используйте основное тригонометрическое тождество (тождество Пифагора): cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−4+16cos(x)−16cos2(x)+9(1−cos2(x))
Упростите −4+16cos(x)−16cos2(x)+9(1−cos2(x)):16cos(x)−25cos2(x)+5
−4+16cos(x)−16cos2(x)+9(1−cos2(x))
Расширить 9(1−cos2(x)):9−9cos2(x)
9(1−cos2(x))
Примените распределительный закон: a(b−c)=ab−aca=9,b=1,c=cos2(x)=9⋅1−9cos2(x)
Перемножьте числа: 9⋅1=9=9−9cos2(x)
=−4+16cos(x)−16cos2(x)+9−9cos2(x)
Упростить −4+16cos(x)−16cos2(x)+9−9cos2(x):16cos(x)−25cos2(x)+5
−4+16cos(x)−16cos2(x)+9−9cos2(x)
Сгруппируйте похожие слагаемые=16cos(x)−16cos2(x)−9cos2(x)−4+9
Добавьте похожие элементы: −16cos2(x)−9cos2(x)=−25cos2(x)=16cos(x)−25cos2(x)−4+9
Прибавьте/Вычтите числа: −4+9=5=16cos(x)−25cos2(x)+5
=16cos(x)−25cos2(x)+5
=16cos(x)−25cos2(x)+5
5+16cos(x)−25cos2(x)=0
Решитe подстановкой
5+16cos(x)−25cos2(x)=0
Допустим: cos(x)=u5+16u−25u2=0
5+16u−25u2=0:u=−25−8+321​​,u=258+321​​
5+16u−25u2=0
Запишите в стандартной форме ax2+bx+c=0−25u2+16u+5=0
Решите с помощью квадратичной формулы
−25u2+16u+5=0
Формула квадратного уравнения:
Для a=−25,b=16,c=5u1,2​=2(−25)−16±162−4(−25)⋅5​​
u1,2​=2(−25)−16±162−4(−25)⋅5​​
162−4(−25)⋅5​=621​
162−4(−25)⋅5​
Примените правило −(−a)=a=162+4⋅25⋅5​
Перемножьте числа: 4⋅25⋅5=500=162+500​
162=256=256+500​
Добавьте числа: 256+500=756=756​
Первичное разложение на множители756:22⋅33⋅7
756
756делится на 2756=378⋅2=2⋅378
378делится на 2378=189⋅2=2⋅2⋅189
189делится на 3189=63⋅3=2⋅2⋅3⋅63
63делится на 363=21⋅3=2⋅2⋅3⋅3⋅21
21делится на 321=7⋅3=2⋅2⋅3⋅3⋅3⋅7
2,3,7 являеются простыми числами, поэтому дальнейшее разложение на множители невозможно=2⋅2⋅3⋅3⋅3⋅7
=22⋅33⋅7
=33⋅22⋅7​
Примените правило возведения в степень: ab+c=ab⋅ac=22⋅32⋅3⋅7​
Примените правило радикалов: =22​32​3⋅7​
Примените правило радикалов: 22​=2=232​3⋅7​
Примените правило радикалов: 32​=3=2⋅33⋅7​
Уточнить=621​
u1,2​=2(−25)−16±621​​
Разделите решенияu1​=2(−25)−16+621​​,u2​=2(−25)−16−621​​
u=2(−25)−16+621​​:−25−8+321​​
2(−25)−16+621​​
Уберите скобки: (−a)=−a=−2⋅25−16+621​​
Перемножьте числа: 2⋅25=50=−50−16+621​​
Примените правило дробей: −ba​=−ba​=−50−16+621​​
Упраздните 50−16+621​​:25321​−8​
50−16+621​​
коэффициент −16+621​:2(−8+321​)
−16+621​
Перепишите как=−2⋅8+2⋅321​
Убрать общее значение 2=2(−8+321​)
=502(−8+321​)​
Отмените общий множитель: 2=25−8+321​​
=−25321​−8​
=−25−8+321​​
u=2(−25)−16−621​​:258+321​​
2(−25)−16−621​​
Уберите скобки: (−a)=−a=−2⋅25−16−621​​
Перемножьте числа: 2⋅25=50=−50−16−621​​
Примените правило дробей: −b−a​=ba​−16−621​=−(16+621​)=5016+621​​
коэффициент 16+621​:2(8+321​)
16+621​
Перепишите как=2⋅8+2⋅321​
Убрать общее значение 2=2(8+321​)
=502(8+321​)​
Отмените общий множитель: 2=258+321​​
Решением квадратного уравнения являются:u=−25−8+321​​,u=258+321​​
Делаем обратную замену u=cos(x)cos(x)=−25−8+321​​,cos(x)=258+321​​
cos(x)=−25−8+321​​,cos(x)=258+321​​
cos(x)=−25−8+321​​:x=arccos(−25−8+321​​)+2πn,x=−arccos(−25−8+321​​)+2πn
cos(x)=−25−8+321​​
Примените обратные тригонометрические свойства
cos(x)=−25−8+321​​
Общие решения для cos(x)=−25−8+321​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−25−8+321​​)+2πn,x=−arccos(−25−8+321​​)+2πn
x=arccos(−25−8+321​​)+2πn,x=−arccos(−25−8+321​​)+2πn
cos(x)=258+321​​:x=arccos(258+321​​)+2πn,x=2π−arccos(258+321​​)+2πn
cos(x)=258+321​​
Примените обратные тригонометрические свойства
cos(x)=258+321​​
Общие решения для cos(x)=258+321​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(258+321​​)+2πn,x=2π−arccos(258+321​​)+2πn
x=arccos(258+321​​)+2πn,x=2π−arccos(258+321​​)+2πn
Объедините все решенияx=arccos(−25−8+321​​)+2πn,x=−arccos(−25−8+321​​)+2πn,x=arccos(258+321​​)+2πn,x=2π−arccos(258+321​​)+2πn
Проверьте решения, вставив их в исходное уравнение
Проверьте решения, вставив их в 3sin(x)−4cos(x)=−2
Удалите те, которые не согласуются с уравнением.
Проверьте решение arccos(−25−8+321​​)+2πn:Неверно
arccos(−25−8+321​​)+2πn
Подставьте n=1arccos(−25−8+321​​)+2π1
Для 3sin(x)−4cos(x)=−2подключитеx=arccos(−25−8+321​​)+2π13sin(arccos(−25−8+321​​)+2π1)−4cos(arccos(−25−8+321​​)+2π1)=−2
Уточнить3.83927…=−2
⇒Неверно
Проверьте решение −arccos(−25−8+321​​)+2πn:Верно
−arccos(−25−8+321​​)+2πn
Подставьте n=1−arccos(−25−8+321​​)+2π1
Для 3sin(x)−4cos(x)=−2подключитеx=−arccos(−25−8+321​​)+2π13sin(−arccos(−25−8+321​​)+2π1)−4cos(−arccos(−25−8+321​​)+2π1)=−2
Уточнить−2=−2
⇒Верно
Проверьте решение arccos(258+321​​)+2πn:Верно
arccos(258+321​​)+2πn
Подставьте n=1arccos(258+321​​)+2π1
Для 3sin(x)−4cos(x)=−2подключитеx=arccos(258+321​​)+2π13sin(arccos(258+321​​)+2π1)−4cos(arccos(258+321​​)+2π1)=−2
Уточнить−2=−2
⇒Верно
Проверьте решение 2π−arccos(258+321​​)+2πn:Неверно
2π−arccos(258+321​​)+2πn
Подставьте n=12π−arccos(258+321​​)+2π1
Для 3sin(x)−4cos(x)=−2подключитеx=2π−arccos(258+321​​)+2π13sin(2π−arccos(258+321​​)+2π1)−4cos(2π−arccos(258+321​​)+2π1)=−2
Уточнить−4.95927…=−2
⇒Неверно
x=−arccos(−25−8+321​​)+2πn,x=arccos(258+321​​)+2πn
Покажите решения в десятичной формеx=−1.80278…+2πn,x=0.51577…+2πn

График

Sorry, your browser does not support this application
Просмотр интерактивного графика

Популярные примеры

6sin(x)+cos^2(x)=25=10sin(x)8sin(x)+7=4cos^2(x)tanh(x)= 1/2sqrt(2)cos(x)-sqrt(2)sin(x)=2
Инструменты для обученияИИ Решатель ЗадачРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для ChromeSymbolab Math Solver API
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьУсловияПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024