Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)-sec(x)=3,0<= x<2pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)−sec(x)=3,0≤x<2π

Solution

x=π+0.92729…
+1
Degrees
x=233.13010…∘
Solution steps
tan(x)−sec(x)=3,0≤x<2π
Subtract 3 from both sidestan(x)−sec(x)−3=0
Express with sin, coscos(x)sin(x)​−cos(x)1​−3=0
Simplify cos(x)sin(x)​−cos(x)1​−3:cos(x)sin(x)−1−3cos(x)​
cos(x)sin(x)​−cos(x)1​−3
Combine the fractions cos(x)sin(x)​−cos(x)1​:cos(x)sin(x)−1​
Apply rule ca​±cb​=ca±b​=cos(x)sin(x)−1​
=cos(x)sin(x)−1​−3
Convert element to fraction: 3=cos(x)3cos(x)​=cos(x)sin(x)−1​−cos(x)3cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)−1−3cos(x)​
cos(x)sin(x)−1−3cos(x)​=0
g(x)f(x)​=0⇒f(x)=0sin(x)−1−3cos(x)=0
Add 3cos(x) to both sidessin(x)−1=3cos(x)
Square both sides(sin(x)−1)2=(3cos(x))2
Subtract (3cos(x))2 from both sides(sin(x)−1)2−9cos2(x)=0
Rewrite using trig identities
(−1+sin(x))2−9cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(−1+sin(x))2−9(1−sin2(x))
Simplify (−1+sin(x))2−9(1−sin2(x)):10sin2(x)−2sin(x)−8
(−1+sin(x))2−9(1−sin2(x))
(−1+sin(x))2:1−2sin(x)+sin2(x)
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=−1,b=sin(x)
=(−1)2+2(−1)sin(x)+sin2(x)
Simplify (−1)2+2(−1)sin(x)+sin2(x):1−2sin(x)+sin2(x)
(−1)2+2(−1)sin(x)+sin2(x)
Remove parentheses: (−a)=−a=(−1)2−2⋅1⋅sin(x)+sin2(x)
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
2⋅1⋅sin(x)=2sin(x)
2⋅1⋅sin(x)
Multiply the numbers: 2⋅1=2=2sin(x)
=1−2sin(x)+sin2(x)
=1−2sin(x)+sin2(x)
=1−2sin(x)+sin2(x)−9(1−sin2(x))
Expand −9(1−sin2(x)):−9+9sin2(x)
−9(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−9,b=1,c=sin2(x)=−9⋅1−(−9)sin2(x)
Apply minus-plus rules−(−a)=a=−9⋅1+9sin2(x)
Multiply the numbers: 9⋅1=9=−9+9sin2(x)
=1−2sin(x)+sin2(x)−9+9sin2(x)
Simplify 1−2sin(x)+sin2(x)−9+9sin2(x):10sin2(x)−2sin(x)−8
1−2sin(x)+sin2(x)−9+9sin2(x)
Group like terms=−2sin(x)+sin2(x)+9sin2(x)+1−9
Add similar elements: sin2(x)+9sin2(x)=10sin2(x)=−2sin(x)+10sin2(x)+1−9
Add/Subtract the numbers: 1−9=−8=10sin2(x)−2sin(x)−8
=10sin2(x)−2sin(x)−8
=10sin2(x)−2sin(x)−8
−8+10sin2(x)−2sin(x)=0
Solve by substitution
−8+10sin2(x)−2sin(x)=0
Let: sin(x)=u−8+10u2−2u=0
−8+10u2−2u=0:u=1,u=−54​
−8+10u2−2u=0
Write in the standard form ax2+bx+c=010u2−2u−8=0
Solve with the quadratic formula
10u2−2u−8=0
Quadratic Equation Formula:
For a=10,b=−2,c=−8u1,2​=2⋅10−(−2)±(−2)2−4⋅10(−8)​​
u1,2​=2⋅10−(−2)±(−2)2−4⋅10(−8)​​
(−2)2−4⋅10(−8)​=18
(−2)2−4⋅10(−8)​
Apply rule −(−a)=a=(−2)2+4⋅10⋅8​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅10⋅8​
Multiply the numbers: 4⋅10⋅8=320=22+320​
22=4=4+320​
Add the numbers: 4+320=324=324​
Factor the number: 324=182=182​
Apply radical rule: 182​=18=18
u1,2​=2⋅10−(−2)±18​
Separate the solutionsu1​=2⋅10−(−2)+18​,u2​=2⋅10−(−2)−18​
u=2⋅10−(−2)+18​:1
2⋅10−(−2)+18​
Apply rule −(−a)=a=2⋅102+18​
Add the numbers: 2+18=20=2⋅1020​
Multiply the numbers: 2⋅10=20=2020​
Apply rule aa​=1=1
u=2⋅10−(−2)−18​:−54​
2⋅10−(−2)−18​
Apply rule −(−a)=a=2⋅102−18​
Subtract the numbers: 2−18=−16=2⋅10−16​
Multiply the numbers: 2⋅10=20=20−16​
Apply the fraction rule: b−a​=−ba​=−2016​
Cancel the common factor: 4=−54​
The solutions to the quadratic equation are:u=1,u=−54​
Substitute back u=sin(x)sin(x)=1,sin(x)=−54​
sin(x)=1,sin(x)=−54​
sin(x)=1,0≤x<2π:x=2π​
sin(x)=1,0≤x<2π
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Solutions for the range 0≤x<2πx=2π​
sin(x)=−54​,0≤x<2π:x=π+arcsin(54​),x=−arcsin(54​)+2π
sin(x)=−54​,0≤x<2π
Apply trig inverse properties
sin(x)=−54​
General solutions for sin(x)=−54​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−54​)+2πn,x=π+arcsin(54​)+2πn
x=arcsin(−54​)+2πn,x=π+arcsin(54​)+2πn
Solutions for the range 0≤x<2πx=π+arcsin(54​),x=−arcsin(54​)+2π
Combine all the solutionsx=2π​,x=π+arcsin(54​),x=−arcsin(54​)+2π
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into tan(x)−sec(x)=3
Remove the ones that don't agree with the equation.
Check the solution 2π​:False
2π​
Plug in n=12π​
For tan(x)−sec(x)=3plug inx=2π​tan(2π​)−sec(2π​)=3
Undefined
⇒False
Check the solution π+arcsin(54​):True
π+arcsin(54​)
Plug in n=1π+arcsin(54​)
For tan(x)−sec(x)=3plug inx=π+arcsin(54​)tan(π+arcsin(54​))−sec(π+arcsin(54​))=3
Refine3=3
⇒True
Check the solution −arcsin(54​)+2π:False
−arcsin(54​)+2π
Plug in n=1−arcsin(54​)+2π
For tan(x)−sec(x)=3plug inx=−arcsin(54​)+2πtan(−arcsin(54​)+2π)−sec(−arcsin(54​)+2π)=3
Refine−3=3
⇒False
x=π+arcsin(54​)
Show solutions in decimal formx=π+0.92729…

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(θ)+2cos^2(θ)=48-12sin^2(x)=4cos^2(x)3(2+cos(x))=5tan(x)= 5/(8.66)3tan(x)-4=tan(x)-2

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)-sec(x)=3,0<= x<2pi ?

    The general solution for tan(x)-sec(x)=3,0<= x<2pi is x=pi+0.92729…
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024