Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

25*sin(x)-1.5*cos(x)=20

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

25⋅sin(x)−1.5⋅cos(x)=20

Solution

x=2.27661…+2πn,x=0.98483…+2πn
+1
Degrees
x=130.44044…∘+360∘n,x=56.42681…∘+360∘n
Solution steps
25sin(x)−1.5cos(x)=20
Add 1.5cos(x) to both sides25sin(x)=20+1.5cos(x)
Square both sides(25sin(x))2=(20+1.5cos(x))2
Subtract (20+1.5cos(x))2 from both sides625sin2(x)−400−60cos(x)−2.25cos2(x)=0
Rewrite using trig identities
−400−2.25cos2(x)−60cos(x)+625sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−400−2.25cos2(x)−60cos(x)+625(1−cos2(x))
Simplify −400−2.25cos2(x)−60cos(x)+625(1−cos2(x)):−627.25cos2(x)−60cos(x)+225
−400−2.25cos2(x)−60cos(x)+625(1−cos2(x))
Expand 625(1−cos2(x)):625−625cos2(x)
625(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=625,b=1,c=cos2(x)=625⋅1−625cos2(x)
Multiply the numbers: 625⋅1=625=625−625cos2(x)
=−400−2.25cos2(x)−60cos(x)+625−625cos2(x)
Simplify −400−2.25cos2(x)−60cos(x)+625−625cos2(x):−627.25cos2(x)−60cos(x)+225
−400−2.25cos2(x)−60cos(x)+625−625cos2(x)
Group like terms=−2.25cos2(x)−60cos(x)−625cos2(x)−400+625
Add similar elements: −2.25cos2(x)−625cos2(x)=−627.25cos2(x)=−627.25cos2(x)−60cos(x)−400+625
Add/Subtract the numbers: −400+625=225=−627.25cos2(x)−60cos(x)+225
=−627.25cos2(x)−60cos(x)+225
=−627.25cos2(x)−60cos(x)+225
225−60cos(x)−627.25cos2(x)=0
Solve by substitution
225−60cos(x)−627.25cos2(x)=0
Let: cos(x)=u225−60u−627.25u2=0
225−60u−627.25u2=0:u=−1254506000+5681250000​​,u=1254505681250000​−6000​
225−60u−627.25u2=0
Multiply both sides by 100
225−60u−627.25u2=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 100225⋅100−60u⋅100−627.25u2⋅100=0⋅100
Refine22500−6000u−62725u2=0
22500−6000u−62725u2=0
Write in the standard form ax2+bx+c=0−62725u2−6000u+22500=0
Solve with the quadratic formula
−62725u2−6000u+22500=0
Quadratic Equation Formula:
For a=−62725,b=−6000,c=22500u1,2​=2(−62725)−(−6000)±(−6000)2−4(−62725)⋅22500​​
u1,2​=2(−62725)−(−6000)±(−6000)2−4(−62725)⋅22500​​
(−6000)2−4(−62725)⋅22500​=5681250000​
(−6000)2−4(−62725)⋅22500​
Apply rule −(−a)=a=(−6000)2+4⋅62725⋅22500​
Apply exponent rule: (−a)n=an,if n is even(−6000)2=60002=60002+4⋅62725⋅22500​
Multiply the numbers: 4⋅62725⋅22500=5645250000=60002+5645250000​
60002=36000000=36000000+5645250000​
Add the numbers: 36000000+5645250000=5681250000=5681250000​
u1,2​=2(−62725)−(−6000)±5681250000​​
Separate the solutionsu1​=2(−62725)−(−6000)+5681250000​​,u2​=2(−62725)−(−6000)−5681250000​​
u=2(−62725)−(−6000)+5681250000​​:−1254506000+5681250000​​
2(−62725)−(−6000)+5681250000​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅627256000+5681250000​​
Multiply the numbers: 2⋅62725=125450=−1254506000+5681250000​​
Apply the fraction rule: −ba​=−ba​=−1254506000+5681250000​​
u=2(−62725)−(−6000)−5681250000​​:1254505681250000​−6000​
2(−62725)−(−6000)−5681250000​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅627256000−5681250000​​
Multiply the numbers: 2⋅62725=125450=−1254506000−5681250000​​
Apply the fraction rule: −b−a​=ba​6000−5681250000​=−(5681250000​−6000)=1254505681250000​−6000​
The solutions to the quadratic equation are:u=−1254506000+5681250000​​,u=1254505681250000​−6000​
Substitute back u=cos(x)cos(x)=−1254506000+5681250000​​,cos(x)=1254505681250000​−6000​
cos(x)=−1254506000+5681250000​​,cos(x)=1254505681250000​−6000​
cos(x)=−1254506000+5681250000​​:x=arccos(−1254506000+5681250000​​)+2πn,x=−arccos(−1254506000+5681250000​​)+2πn
cos(x)=−1254506000+5681250000​​
Apply trig inverse properties
cos(x)=−1254506000+5681250000​​
General solutions for cos(x)=−1254506000+5681250000​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−1254506000+5681250000​​)+2πn,x=−arccos(−1254506000+5681250000​​)+2πn
x=arccos(−1254506000+5681250000​​)+2πn,x=−arccos(−1254506000+5681250000​​)+2πn
cos(x)=1254505681250000​−6000​:x=arccos(1254505681250000​−6000​)+2πn,x=2π−arccos(1254505681250000​−6000​)+2πn
cos(x)=1254505681250000​−6000​
Apply trig inverse properties
cos(x)=1254505681250000​−6000​
General solutions for cos(x)=1254505681250000​−6000​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(1254505681250000​−6000​)+2πn,x=2π−arccos(1254505681250000​−6000​)+2πn
x=arccos(1254505681250000​−6000​)+2πn,x=2π−arccos(1254505681250000​−6000​)+2πn
Combine all the solutionsx=arccos(−1254506000+5681250000​​)+2πn,x=−arccos(−1254506000+5681250000​​)+2πn,x=arccos(1254505681250000​−6000​)+2πn,x=2π−arccos(1254505681250000​−6000​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 25sin(x)−1.5cos(x)=20
Remove the ones that don't agree with the equation.
Check the solution arccos(−1254506000+5681250000​​)+2πn:True
arccos(−1254506000+5681250000​​)+2πn
Plug in n=1arccos(−1254506000+5681250000​​)+2π1
For 25sin(x)−1.5cos(x)=20plug inx=arccos(−1254506000+5681250000​​)+2π125sin(arccos(−1254506000+5681250000​​)+2π1)−1.5cos(arccos(−1254506000+5681250000​​)+2π1)=20
Refine20=20
⇒True
Check the solution −arccos(−1254506000+5681250000​​)+2πn:False
−arccos(−1254506000+5681250000​​)+2πn
Plug in n=1−arccos(−1254506000+5681250000​​)+2π1
For 25sin(x)−1.5cos(x)=20plug inx=−arccos(−1254506000+5681250000​​)+2π125sin(−arccos(−1254506000+5681250000​​)+2π1)−1.5cos(−arccos(−1254506000+5681250000​​)+2π1)=20
Refine−18.05402…=20
⇒False
Check the solution arccos(1254505681250000​−6000​)+2πn:True
arccos(1254505681250000​−6000​)+2πn
Plug in n=1arccos(1254505681250000​−6000​)+2π1
For 25sin(x)−1.5cos(x)=20plug inx=arccos(1254505681250000​−6000​)+2π125sin(arccos(1254505681250000​−6000​)+2π1)−1.5cos(arccos(1254505681250000​−6000​)+2π1)=20
Refine20=20
⇒True
Check the solution 2π−arccos(1254505681250000​−6000​)+2πn:False
2π−arccos(1254505681250000​−6000​)+2πn
Plug in n=12π−arccos(1254505681250000​−6000​)+2π1
For 25sin(x)−1.5cos(x)=20plug inx=2π−arccos(1254505681250000​−6000​)+2π125sin(2π−arccos(1254505681250000​−6000​)+2π1)−1.5cos(2π−arccos(1254505681250000​−6000​)+2π1)=20
Refine−21.65900…=20
⇒False
x=arccos(−1254506000+5681250000​​)+2πn,x=arccos(1254505681250000​−6000​)+2πn
Show solutions in decimal formx=2.27661…+2πn,x=0.98483…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos(3x)=2cos(x)4cos^2(x)+4sin(x)-1=0sin(x-1)=0csc(θ)=-0.5cot(2t+5)=tan(3t-15)

Frequently Asked Questions (FAQ)

  • What is the general solution for 25*sin(x)-1.5*cos(x)=20 ?

    The general solution for 25*sin(x)-1.5*cos(x)=20 is x=2.27661…+2pin,x=0.98483…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024