Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cos(3x)=2cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos(3x)=2cos(x)

Solution

x=2π​+2πn,x=23π​+2πn,x=2.84874…+2πn,x=−2.84874…+2πn,x=0.29284…+2πn,x=2π−0.29284…+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=163.22134…∘+360∘n,x=−163.22134…∘+360∘n,x=16.77865…∘+360∘n,x=343.22134…∘+360∘n
Solution steps
3cos(3x)=2cos(x)
Subtract 2cos(x) from both sides3cos(3x)−2cos(x)=0
Rewrite using trig identities
−2cos(x)+3cos(3x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
Rewrite as=cos(2x+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplify cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Add the numbers: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expand (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expand cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplify 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiply: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expand −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Apply minus-plus rules−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplify −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiply the numbers: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Add the numbers: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplify 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Group like terms=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Add similar elements: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Add similar elements: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−2cos(x)+3(4cos3(x)−3cos(x))
Simplify −2cos(x)+3(4cos3(x)−3cos(x)):−11cos(x)+12cos3(x)
−2cos(x)+3(4cos3(x)−3cos(x))
Expand 3(4cos3(x)−3cos(x)):12cos3(x)−9cos(x)
3(4cos3(x)−3cos(x))
Apply the distributive law: a(b−c)=ab−aca=3,b=4cos3(x),c=3cos(x)=3⋅4cos3(x)−3⋅3cos(x)
Simplify 3⋅4cos3(x)−3⋅3cos(x):12cos3(x)−9cos(x)
3⋅4cos3(x)−3⋅3cos(x)
Multiply the numbers: 3⋅4=12=12cos3(x)−3⋅3cos(x)
Multiply the numbers: 3⋅3=9=12cos3(x)−9cos(x)
=12cos3(x)−9cos(x)
=−2cos(x)+12cos3(x)−9cos(x)
Add similar elements: −2cos(x)−9cos(x)=−11cos(x)=−11cos(x)+12cos3(x)
=−11cos(x)+12cos3(x)
−11cos(x)+12cos3(x)=0
Solve by substitution
−11cos(x)+12cos3(x)=0
Let: cos(x)=u−11u+12u3=0
−11u+12u3=0:u=0,u=−633​​,u=633​​
−11u+12u3=0
Factor −11u+12u3:u(23​u+11​)(23​u−11​)
−11u+12u3
Factor out common term u:u(12u2−11)
12u3−11u
Apply exponent rule: ab+c=abacu3=u2u=12u2u−11u
Factor out common term u=u(12u2−11)
=u(12u2−11)
Factor 12u2−11:(12​u+11​)(12​u−11​)
12u2−11
Rewrite 12u2−11 as (12​u)2−(11​)2
12u2−11
Apply radical rule: a=(a​)212=(12​)2=(12​)2u2−11
Apply radical rule: a=(a​)211=(11​)2=(12​)2u2−(11​)2
Apply exponent rule: ambm=(ab)m(12​)2u2=(12​u)2=(12​u)2−(11​)2
=(12​u)2−(11​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(12​u)2−(11​)2=(12​u+11​)(12​u−11​)=(12​u+11​)(12​u−11​)
=u(12​u+11​)(12​u−11​)
Refine=u(23​u+11​)(23​u−11​)
u(23​u+11​)(23​u−11​)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0or23​u+11​=0or23​u−11​=0
Solve 23​u+11​=0:u=−633​​
23​u+11​=0
Move 11​to the right side
23​u+11​=0
Subtract 11​ from both sides23​u+11​−11​=0−11​
Simplify23​u=−11​
23​u=−11​
Divide both sides by 23​
23​u=−11​
Divide both sides by 23​23​23​u​=23​−11​​
Simplify
23​23​u​=23​−11​​
Simplify 23​23​u​:u
23​23​u​
Divide the numbers: 22​=1=3​3​u​
Cancel the common factor: 3​=u
Simplify 23​−11​​:−633​​
23​−11​​
Apply the fraction rule: b−a​=−ba​=−23​11​​
Rationalize −23​11​​:−633​​
−23​11​​
Multiply by the conjugate 3​3​​=−23​3​11​3​​
11​3​=33​
11​3​
Apply radical rule: a​b​=a⋅b​11​3​=11⋅3​=11⋅3​
Multiply the numbers: 11⋅3=33=33​
23​3​=6
23​3​
Apply radical rule: a​a​=a3​3​=3=2⋅3
Multiply the numbers: 2⋅3=6=6
=−633​​
=−633​​
u=−633​​
u=−633​​
u=−633​​
Solve 23​u−11​=0:u=633​​
23​u−11​=0
Move 11​to the right side
23​u−11​=0
Add 11​ to both sides23​u−11​+11​=0+11​
Simplify23​u=11​
23​u=11​
Divide both sides by 23​
23​u=11​
Divide both sides by 23​23​23​u​=23​11​​
Simplify
23​23​u​=23​11​​
Simplify 23​23​u​:u
23​23​u​
Divide the numbers: 22​=1=3​3​u​
Cancel the common factor: 3​=u
Simplify 23​11​​:633​​
23​11​​
Multiply by the conjugate 3​3​​=23​3​11​3​​
11​3​=33​
11​3​
Apply radical rule: a​b​=a⋅b​11​3​=11⋅3​=11⋅3​
Multiply the numbers: 11⋅3=33=33​
23​3​=6
23​3​
Apply radical rule: a​a​=a3​3​=3=2⋅3
Multiply the numbers: 2⋅3=6=6
=633​​
u=633​​
u=633​​
u=633​​
The solutions areu=0,u=−633​​,u=633​​
Substitute back u=cos(x)cos(x)=0,cos(x)=−633​​,cos(x)=633​​
cos(x)=0,cos(x)=−633​​,cos(x)=633​​
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−633​​:x=arccos(−633​​)+2πn,x=−arccos(−633​​)+2πn
cos(x)=−633​​
Apply trig inverse properties
cos(x)=−633​​
General solutions for cos(x)=−633​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−633​​)+2πn,x=−arccos(−633​​)+2πn
x=arccos(−633​​)+2πn,x=−arccos(−633​​)+2πn
cos(x)=633​​:x=arccos(633​​)+2πn,x=2π−arccos(633​​)+2πn
cos(x)=633​​
Apply trig inverse properties
cos(x)=633​​
General solutions for cos(x)=633​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(633​​)+2πn,x=2π−arccos(633​​)+2πn
x=arccos(633​​)+2πn,x=2π−arccos(633​​)+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=arccos(−633​​)+2πn,x=−arccos(−633​​)+2πn,x=arccos(633​​)+2πn,x=2π−arccos(633​​)+2πn
Show solutions in decimal formx=2π​+2πn,x=23π​+2πn,x=2.84874…+2πn,x=−2.84874…+2πn,x=0.29284…+2πn,x=2π−0.29284…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4cos^2(x)+4sin(x)-1=0sin(x-1)=0csc(θ)=-0.5cot(2t+5)=tan(3t-15)2cos(x)-4sin(x)cos(x)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024