Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(x)+arcsin(1-x)=arccos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(x)+arcsin(1−x)=arccos(x)

Solution

x=0,x=21​
Solution steps
arcsin(x)+arcsin(1−x)=arccos(x)
a=b⇒cos(a)=cos(b)cos(arcsin(x)+arcsin(1−x))=cos(arccos(x))
Use the following identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)cos(arcsin(x))cos(arcsin(1−x))−sin(arcsin(x))sin(arcsin(1−x))=cos(arccos(x))
Use the following identity: cos(arcsin(x))=1−x2​
Use the following identity: cos(arcsin(x))=1−x2​
Use the following identity: sin(arcsin(x))=x
Use the following identity: sin(arcsin(x))=x
1−x2​1−(1−x)2​−x(1−x)=x
Solve 1−x2​1−(1−x)2​−x(1−x)=x:x=0,x=21​
1−x2​1−(1−x)2​−x(1−x)=x
Expand 1−x2​1−(1−x)2​−x(1−x):1−x2​−x2+2x​−x+x2
1−x2​1−(1−x)2​−x(1−x)
Expand −x(1−x):−x+x2
−x(1−x)
Apply the distributive law: a(b−c)=ab−aca=−x,b=1,c=x=−x⋅1−(−x)x
Apply minus-plus rules−(−a)=a=−1⋅x+xx
Simplify −1⋅x+xx:−x+x2
−1⋅x+xx
1⋅x=x
1⋅x
Multiply: 1⋅x=x=x
xx=x2
xx
Apply exponent rule: ab⋅ac=ab+cxx=x1+1=x1+1
Add the numbers: 1+1=2=x2
=−x+x2
=−x+x2
=1−x2​1−(1−x)2​−x+x2
Expand 1−x2​1−(1−x)2​−x+x2:1−x2​−x2+2x​−x+x2
1−x2​1−(1−x)2​−x+x2
1−(1−x)2​=−x2+2x​
1−(1−x)2​
Expand 1−(1−x)2:−x2+2x
1−(1−x)2
(1−x)2:1−2x+x2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=x
=12−2⋅1⋅x+x2
Simplify 12−2⋅1⋅x+x2:1−2x+x2
12−2⋅1⋅x+x2
Apply rule 1a=112=1=1−2⋅1⋅x+x2
Multiply the numbers: 2⋅1=2=1−2x+x2
=1−2x+x2
=1−(1−2x+x2)
−(1−2x+x2):−1+2x−x2
−(1−2x+x2)
Distribute parentheses=−(1)−(−2x)−(x2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2x−x2
=1−1+2x−x2
1−1=0=−x2+2x
=−x2+2x​
=−x2+1​−x2+2x​−x+x2
=1−x2​−x2+2x​−x+x2
1−x2​−x2+2x​−x+x2=x
Remove square roots
1−x2​−x2+2x​−x+x2=x
Subtract −x+x2 from both sides1−x2​−x2+2x​−x+x2−(−x+x2)=x−(−x+x2)
Simplify1−x2​−x2+2x​=2x−x2
Square both sides:−x2+2x+x4−2x3=4x2−4x3+x4
1−x2​−x2+2x​−x+x2=x
(1−x2​−x2+2x​)2=(2x−x2)2
Expand (1−x2​−x2+2x​)2:−x2+2x+x4−2x3
(1−x2​−x2+2x​)2
Apply exponent rule: (a⋅b)n=anbn=(1−x2​)2(−x2+2x​)2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=(1−x2)(−x2+2x​)2
(−x2+2x​)2:−x2+2x
Apply radical rule: a​=a21​=((−x2+2x)21​)2
Apply exponent rule: (ab)c=abc=(−x2+2x)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=−x2+2x
=(1−x2)(−x2+2x)
Expand (1−x2)(−x2+2x):−x2+2x+x4−2x3
(1−x2)(−x2+2x)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=1,b=−x2,c=−x2,d=2x=1⋅(−x2)+1⋅2x+(−x2)(−x2)+(−x2)⋅2x
Apply minus-plus rules+(−a)=−a,(−a)(−b)=ab=−1⋅x2+1⋅2x+x2x2−2x2x
Simplify −1⋅x2+1⋅2x+x2x2−2x2x:−x2+2x+x4−2x3
−1⋅x2+1⋅2x+x2x2−2x2x
1⋅x2=x2
1⋅x2
Multiply: 1⋅x2=x2=x2
1⋅2x=2x
1⋅2x
Multiply the numbers: 1⋅2=2=2x
x2x2=x4
x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=x2+2
Add the numbers: 2+2=4=x4
2x2x=2x3
2x2x
Apply exponent rule: ab⋅ac=ab+cx2x=x2+1=2x2+1
Add the numbers: 2+1=3=2x3
=−x2+2x+x4−2x3
=−x2+2x+x4−2x3
=−x2+2x+x4−2x3
Expand (2x−x2)2:4x2−4x3+x4
(2x−x2)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2x,b=x2
=(2x)2−2⋅2xx2+(x2)2
Simplify (2x)2−2⋅2xx2+(x2)2:4x2−4x3+x4
(2x)2−2⋅2xx2+(x2)2
(2x)2=4x2
(2x)2
Apply exponent rule: (a⋅b)n=anbn=22x2
22=4=4x2
2⋅2xx2=4x3
2⋅2xx2
Multiply the numbers: 2⋅2=4=4x2x
Apply exponent rule: ab⋅ac=ab+cxx2=x1+2=4x1+2
Add the numbers: 1+2=3=4x3
(x2)2=x4
(x2)2
Apply exponent rule: (ab)c=abc=x2⋅2
Multiply the numbers: 2⋅2=4=x4
=4x2−4x3+x4
=4x2−4x3+x4
−x2+2x+x4−2x3=4x2−4x3+x4
−x2+2x+x4−2x3=4x2−4x3+x4
−x2+2x+x4−2x3=4x2−4x3+x4
Solve −x2+2x+x4−2x3=4x2−4x3+x4:x=0,x=21​,x=2
−x2+2x+x4−2x3=4x2−4x3+x4
Subtract 4x2−4x3+x4 from both sides−x2+2x+x4−2x3−(4x2−4x3+x4)=4x2−4x3+x4−(4x2−4x3+x4)
Simplify2x3−5x2+2x=0
Factor 2x3−5x2+2x:x(2x−1)(x−2)
2x3−5x2+2x
Factor out common term x:x(2x2−5x+2)
2x3−5x2+2x
Apply exponent rule: ab+c=abacx2=xx=2x2x−5xx+2x
Factor out common term x=x(2x2−5x+2)
=x(2x2−5x+2)
Factor 2x2−5x+2:(2x−1)(x−2)
2x2−5x+2
Break the expression into groups
2x2−5x+2
Definition
Factors of 4:1,2,4
4
Divisors (Factors)
Find the Prime factors of 4:2,2
4
4divides by 24=2⋅2=2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2
Add the prime factors: 2
Add 1 and the number 4 itself1,4
The factors of 41,2,4
Negative factors of 4:−1,−2,−4
Multiply the factors by −1 to get the negative factors−1,−2,−4
For every two factors such that u∗v=4,check if u+v=−5
Check u=1,v=4:u∗v=4,u+v=5⇒FalseCheck u=2,v=2:u∗v=4,u+v=4⇒False
u=−1,v=−4
Group into (ax2+ux)+(vx+c)(2x2−x)+(−4x+2)
=(2x2−x)+(−4x+2)
Factor out xfrom 2x2−x:x(2x−1)
2x2−x
Apply exponent rule: ab+c=abacx2=xx=2xx−x
Factor out common term x=x(2x−1)
Factor out −2from −4x+2:−2(2x−1)
−4x+2
Rewrite 4 as 2⋅2=−2⋅2x+2
Factor out common term −2=−2(2x−1)
=x(2x−1)−2(2x−1)
Factor out common term 2x−1=(2x−1)(x−2)
=x(2x−1)(x−2)
x(2x−1)(x−2)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0x=0or2x−1=0orx−2=0
Solve 2x−1=0:x=21​
2x−1=0
Move 1to the right side
2x−1=0
Add 1 to both sides2x−1+1=0+1
Simplify2x=1
2x=1
Divide both sides by 2
2x=1
Divide both sides by 222x​=21​
Simplifyx=21​
x=21​
Solve x−2=0:x=2
x−2=0
Move 2to the right side
x−2=0
Add 2 to both sidesx−2+2=0+2
Simplifyx=2
x=2
The solutions arex=0,x=21​,x=2
x=0,x=21​,x=2
Verify Solutions:x=0True,x=21​True,x=2False
Check the solutions by plugging them into 1−x2​1−(1−x)2​−x(1−x)=x
Remove the ones that don't agree with the equation.
Plug in x=0:True
1−02​1−(1−0)2​−0⋅(1−0)=0
1−02​1−(1−0)2​−0⋅(1−0)=0
1−02​1−(1−0)2​−0⋅(1−0)
Apply rule 0a=002=0=1−0​−(1−0)2+1​−0⋅(1−0)
1−0​1−(1−0)2​=0
1−0​1−(1−0)2​
1−0​=1
1−0​
Subtract the numbers: 1−0=1=1​
Apply rule 1​=1=1
=1⋅−(1−0)2+1​
1−(1−0)2​=0
1−(1−0)2​
(1−0)2=1
(1−0)2
Subtract the numbers: 1−0=1=12
Apply rule 1a=1=1
=1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=1⋅0
Apply rule 0⋅a=0=0
0⋅(1−0)=0
0⋅(1−0)
Subtract the numbers: 1−0=1=0⋅1
Apply rule 0⋅a=0=0
=0−0
Subtract the numbers: 0−0=0=0
0=0
True
Plug in x=21​:True
1−(21​)2​1−(1−(21​))2​−(21​)(1−(21​))=21​
1−(21​)2​1−(1−(21​))2​−(21​)(1−(21​))=21​
1−(21​)2​1−(1−(21​))2​−(21​)(1−(21​))
Remove parentheses: (a)=a=1−(21​)2​1−(1−21​)2​−21​(1−21​)
1−(21​)2​1−(1−21​)2​=43​
1−(21​)2​1−(1−21​)2​
1−(21​)2​=23​​
1−(21​)2​
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=23​​−(−21​+1)2+1​
1−(1−21​)2​=23​​
1−(1−21​)2​
(1−21​)2=41​
(1−21​)2
Join 1−21​:21​
1−21​
Convert element to fraction: 1=21⋅2​=21⋅2​−21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2−1​
1⋅2−1=1
1⋅2−1
Multiply the numbers: 1⋅2=2=2−1
Subtract the numbers: 2−1=1=1
=21​
=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=23​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅23​3​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=2⋅23​
Multiply the numbers: 2⋅2=4=43​
21​(1−21​)=41​
21​(1−21​)
Join 1−21​:21​
1−21​
Convert element to fraction: 1=21⋅2​=21⋅2​−21​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=21⋅2−1​
1⋅2−1=1
1⋅2−1
Multiply the numbers: 1⋅2=2=2−1
Subtract the numbers: 2−1=1=1
=21​
=21​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅1​
Multiply the numbers: 1⋅1=1=2⋅21​
Multiply the numbers: 2⋅2=4=41​
=43​−41​
Apply rule ca​±cb​=ca±b​=43−1​
Subtract the numbers: 3−1=2=42​
Cancel the common factor: 2=21​
21​=21​
True
Plug in x=2:False
1−22​1−(1−2)2​−2(1−2)=2
Simplify 1−22​1−(1−2)2​−2(1−2):Undefined
1−22​1−(1−2)2​−2(1−2)
1−22​1−(1−2)2​=Undefined
1−22​1−(1−2)2​
1−22​=−3​
1−22​
22=4=1−4​
Subtract the numbers: 1−4=−3=−3​
=−3​−(1−2)2+1​
1−(1−2)2​=0
1−(1−2)2​
(1−2)2=1
(1−2)2
Subtract the numbers: 1−2=−1=(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
=1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=0⋅−3​
a​,a<0is undefined=Undefined
=Undefined
Undefined=2
False
The solutions arex=0,x=21​
x=0,x=21​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arcsin(x)+arcsin(1−x)=arccos(x)
Remove the ones that don't agree with the equation.
Check the solution 0:True
0
Plug in n=10
For arcsin(x)+arcsin(1−x)=arccos(x)plug inx=0arcsin(0)+arcsin(1−0)=arccos(0)
Refine1.57079…=1.57079…
⇒True
Check the solution 21​:True
21​
Plug in n=121​
For arcsin(x)+arcsin(1−x)=arccos(x)plug inx=21​arcsin(21​)+arcsin(1−21​)=arccos(21​)
Refine1.04719…=1.04719…
⇒True
x=0,x=21​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3cos^2(x)+1=4sin(x)[2sin(4x)-1]*[1+tan(x)]=0cos^2(x)=2cos(x)sin(4θ)=(sqrt(3))/22sin(θ)=-0.684

Frequently Asked Questions (FAQ)

  • What is the general solution for arcsin(x)+arcsin(1-x)=arccos(x) ?

    The general solution for arcsin(x)+arcsin(1-x)=arccos(x) is x=0,x= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024