Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)<= sin^2(x)<= (sqrt(3))/2 sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)≤sin2(x)≤23​​sin(x)

Solution

x=π+2πn
+1
Decimal
x=3.14159…+2πn
Solution steps
sin(x)≤sin2(x)≤23​​sin(x)
If a≤u≤bthen a≤uandu≤bsin(x)≤sin2(x)andsin2(x)≤23​​sin(x)
sin(x)≤sin2(x):x=2π​+2πnor−π+2πn≤x≤2πn
sin(x)≤sin2(x)
Let: u=sin(x)u≤u2
u≤u2:u≤0oru≥1
u≤u2
Rewrite in standard form
u≤u2
Subtract u2 from both sidesu−u2≤u2−u2
Simplifyu−u2≤0
u−u2≤0
Factor u−u2:−u(u−1)
u−u2
Apply exponent rule: ab+c=abacu2=uu=−uu+u
Factor out common term −u=−u(u−1)
−u(u−1)≤0
Multiply both sides by −1 (reverse the inequality)(−u(u−1))(−1)≥0⋅(−1)
Simplifyu(u−1)≥0
Identify the intervals
Find the signs of the factors of u(u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Summarize in a table:uu−1u(u−1)​u<0−−+​u=00−0​0<u<1+−−​u=1+00​u>1+++​​
Identify the intervals that satisfy the required condition: ≥0u<0oru=0oru=1oru>1
Merge Overlapping Intervals
u≤0oru=1oru>1
The union of two intervals is the set of numbers which are in either interval
u<0oru=0
u≤0
The union of two intervals is the set of numbers which are in either interval
u≤0oru=1
u≤0oru=1
The union of two intervals is the set of numbers which are in either interval
u≤0oru=1oru>1
u≤0oru≥1
u≤0oru≥1
u≤0oru≥1
u≤0oru≥1
Substitute back u=sin(x)sin(x)≤0orsin(x)≥1
sin(x)≤0:−π+2πn≤x≤2πn
sin(x)≤0
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(0)+2πn≤x≤arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn≤x≤0+2πn
Simplify−π+2πn≤x≤2πn
sin(x)≥1:x=2π​+2πn
sin(x)≥1
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(1)+2πn≤x≤π−arcsin(1)+2πn
Simplify arcsin(1):2π​
arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=2π​
Simplify π−arcsin(1):2π​
π−arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−2π​
Simplify
π−2π​
Convert element to fraction: π=2π2​=2π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π2−π​
Add similar elements: 2π−π=π=2π​
=2π​
2π​+2πn≤x≤2π​+2πn
Simplifyx=2π​+2πn
Combine the intervals−π+2πn≤x≤2πnorx=2π​+2πn
Merge Overlapping Intervalsx=2π​+2πnor−π+2πn≤x≤2πn
sin2(x)≤23​​sin(x):2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn
sin2(x)≤23​​sin(x)
Let: u=sin(x)u2≤23​​u
u2≤23​​u:0≤u≤23​​
u2≤23​​u
Rewrite in standard form
u2≤23​​u
Subtract 23​​u from both sidesu2−23​​u≤23​​u−23​​u
Simplifyu2−23​​u≤0
Multiply both sides by 2u2⋅2−23​​u⋅2≤0⋅2
2u2−3​u≤0
2u2−3​u≤0
Factor 2u2−3​u:u(2u−3​)
2u2−3​u
Apply exponent rule: ab+c=abacu2=uu=2uu−3​u
Factor out common term u=u(2u−1⋅23​)
Multiply the numbers: 1⋅2=2=u(2u−3​)
u(2u−3​)≤0
Identify the intervals
Find the signs of the factors of u(2u−3​)
Find the signs of u
u=0
u<0
u>0
Find the signs of 2u−3​
2u−3​=0:u=23​​
2u−3​=0
Move 3​to the right side
2u−3​=0
Add 3​ to both sides2u−3​+3​=0+3​
Simplify2u=3​
2u=3​
Divide both sides by 2
2u=3​
Divide both sides by 222u​=23​​
Simplifyu=23​​
u=23​​
2u−3​<0:u<23​​
2u−3​<0
Move 3​to the right side
2u−3​<0
Add 3​ to both sides2u−3​+3​<0+3​
Simplify2u<3​
2u<3​
Divide both sides by 2
2u<3​
Divide both sides by 222u​<23​​
Simplifyu<23​​
u<23​​
2u−3​>0:u>23​​
2u−3​>0
Move 3​to the right side
2u−3​>0
Add 3​ to both sides2u−3​+3​>0+3​
Simplify2u>3​
2u>3​
Divide both sides by 2
2u>3​
Divide both sides by 222u​>23​​
Simplifyu>23​​
u>23​​
Summarize in a table:u2u−3​u(2u−3​)​u<0−−+​u=00−0​0<u<23​​+−−​u=23​​+00​u>23​​+++​​
Identify the intervals that satisfy the required condition: ≤0u=0or0<u<23​​oru=23​​
Merge Overlapping Intervals
0≤u<23​​oru=23​​
The union of two intervals is the set of numbers which are in either interval
u=0or0<u<23​​
0≤u<23​​
The union of two intervals is the set of numbers which are in either interval
0≤u<23​​oru=23​​
0≤u≤23​​
0≤u≤23​​
0≤u≤23​​
0≤u≤23​​
Substitute back u=sin(x)0≤sin(x)≤23​​
If a≤u≤bthen a≤uandu≤b0≤sin(x)andsin(x)≤23​​
0≤sin(x):2πn≤x≤π+2πn
0≤sin(x)
Switch sidessin(x)≥0
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(0)+2πn≤x≤π−arcsin(0)+2πn
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Simplify π−arcsin(0):π
π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn≤x≤π+2πn
Simplify2πn≤x≤π+2πn
sin(x)≤23​​:−34π​+2πn≤x≤3π​+2πn
sin(x)≤23​​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(23​​)+2πn≤x≤arcsin(23​​)+2πn
Simplify −π−arcsin(23​​):−34π​
−π−arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−3π​
Simplify
−π−3π​
Convert element to fraction: π=3π3​=−3π3​−3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−π3−π​
Add similar elements: −3π−π=−4π=3−4π​
Apply the fraction rule: b−a​=−ba​=−34π​
=−34π​
Simplify arcsin(23​​):3π​
arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=3π​
−34π​+2πn≤x≤3π​+2πn
Combine the intervals2πn≤x≤π+2πnand−34π​+2πn≤x≤3π​+2πn
Merge Overlapping Intervals2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn
Combine the intervals(x=2π​+2πnor−π+2πn≤x≤2πn)and(2πn≤x≤3π​+2πnor32π​+2πn≤x≤π+2πn)
Merge Overlapping Intervalsx=π+2πn

Popular Examples

-1<= cos(x-pi/4)<= 1−1≤cos(x−4π​)≤1sin(θ)=13\land 0<θ<pi^2,2θsin(θ)=13and0<θ<π2,2θsin(7)(x)<sin(2)(x)+cos(7)(x)<cos(2)(x)sin(7)(x)<sin(2)(x)+cos(7)(x)<cos(2)(x)0<sin(x)<10<sin(x)<1tan(θ)=-5/2 \land cos(θ)<0tan(θ)=−25​andcos(θ)<0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024