Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)<cos(x)<tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)<cos(x)<tan(x)

Solution

0.66623…+2πn<x<4π​+2πnor45π​+2πn<x<23π​+2πn
+2
Interval Notation
(0.66623…+2πn,4π​+2πn)∪(45π​+2πn,23π​+2πn)
Decimal
0.66623…+2πn<x<0.78539…+2πnor3.92699…+2πn<x<4.71238…+2πn
Solution steps
sin(x)<cos(x)<tan(x)
If a<u<bthen a<uandu<bsin(x)<cos(x)andcos(x)<tan(x)
sin(x)<cos(x):−43π​+2πn<x<4π​+2πn
sin(x)<cos(x)
Move cos(x)to the left side
sin(x)<cos(x)
Subtract cos(x) from both sidessin(x)−cos(x)<cos(x)−cos(x)
sin(x)−cos(x)<0
sin(x)−cos(x)<0
Use the following identity: −cos(x)+sin(x)=−2​cos(4π​+x)−2​cos(4π​+x)<0
Multiply both sides by −1
−2​cos(4π​+x)<0
Multiply both sides by -1 (reverse the inequality)(−2​cos(4π​+x))(−1)>0⋅(−1)
Simplify2​cos(4π​+x)>0
2​cos(4π​+x)>0
Divide both sides by 2​
2​cos(4π​+x)>0
Divide both sides by 2​2​2​cos(4π​+x)​>2​0​
Simplifycos(4π​+x)>0
cos(4π​+x)>0
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(0)+2πn<(4π​+x)<arccos(0)+2πn
If a<u<bthen a<uandu<b−arccos(0)+2πn<4π​+xand4π​+x<arccos(0)+2πn
−arccos(0)+2πn<4π​+x:x>2πn−43π​
−arccos(0)+2πn<4π​+x
Switch sides4π​+x>−arccos(0)+2πn
Simplify −arccos(0)+2πn:−2π​+2πn
−arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−2π​+2πn
4π​+x>−2π​+2πn
Move 4π​to the right side
4π​+x>−2π​+2πn
Subtract 4π​ from both sides4π​+x−4π​>−2π​+2πn−4π​
Simplify
4π​+x−4π​>−2π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​>0
=x
Simplify −2π​+2πn−4π​:2πn−43π​
−2π​+2πn−4π​
Group like terms=2πn−2π​−4π​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 2π​:multiply the denominator and numerator by 22π​=2⋅2π2​=4π2​
=−4π2​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−π2−π​
Add similar elements: −2π−π=−3π=4−3π​
Apply the fraction rule: b−a​=−ba​=2πn−43π​
x>2πn−43π​
x>2πn−43π​
x>2πn−43π​
4π​+x<arccos(0)+2πn:x<2πn+4π​
4π​+x<arccos(0)+2πn
Simplify arccos(0)+2πn:2π​+2πn
arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​+2πn
4π​+x<2π​+2πn
Move 4π​to the right side
4π​+x<2π​+2πn
Subtract 4π​ from both sides4π​+x−4π​<2π​+2πn−4π​
Simplify
4π​+x−4π​<2π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​<0
=x
Simplify 2π​+2πn−4π​:2πn+4π​
2π​+2πn−4π​
Group like terms=2πn+2π​−4π​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 2π​:multiply the denominator and numerator by 22π​=2⋅2π2​=4π2​
=4π2​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4π2−π​
Add similar elements: 2π−π=π=2πn+4π​
x<2πn+4π​
x<2πn+4π​
x<2πn+4π​
Combine the intervalsx>2πn−43π​andx<2πn+4π​
Merge Overlapping Intervals−43π​+2πn<x<4π​+2πn
cos(x)<tan(x):0.66623…+2πn<x<2π​+2πnorπ−0.66623…+2πn<x<23π​+2πn
cos(x)<tan(x)
Move tan(x)to the left side
cos(x)<tan(x)
Subtract tan(x) from both sidescos(x)−tan(x)<tan(x)−tan(x)
cos(x)−tan(x)<0
cos(x)−tan(x)<0
Periodicity of cos(x)−tan(x):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodscos(x),tan(x)
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
Periodicity of tan(x):π
Periodicity of tan(x)is π=π
Combine periods: 2π,π
=2π
Express with sin, cos
cos(x)−tan(x)<0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x)−cos(x)sin(x)​<0
cos(x)−cos(x)sin(x)​<0
Simplify cos(x)−cos(x)sin(x)​:cos(x)cos2(x)−sin(x)​
cos(x)−cos(x)sin(x)​
Convert element to fraction: cos(x)=cos(x)cos(x)cos(x)​=cos(x)cos(x)cos(x)​−cos(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)cos(x)cos(x)−sin(x)​
cos(x)cos(x)−sin(x)=cos2(x)−sin(x)
cos(x)cos(x)−sin(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=cos2(x)−sin(x)
=cos(x)cos2(x)−sin(x)​
cos(x)cos2(x)−sin(x)​<0
Find the zeroes and undifined points of cos(x)cos2(x)−sin(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos(x)cos2(x)−sin(x)​=0
cos(x)cos2(x)−sin(x)​=0,0≤x<2π:x=0.66623…,x=π−0.66623…
cos(x)cos2(x)−sin(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0cos2(x)−sin(x)=0
Rewrite using trig identities
cos2(x)−sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)−sin(x)
1−sin(x)−sin2(x)=0
Solve by substitution
1−sin(x)−sin2(x)=0
Let: sin(x)=u1−u−u2=0
1−u−u2=0:u=−21+5​​,u=25​−1​
1−u−u2=0
Write in the standard form ax2+bx+c=0−u2−u+1=0
Solve with the quadratic formula
−u2−u+1=0
Quadratic Equation Formula:
For a=−1,b=−1,c=1u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
(−1)2−4(−1)⋅1​=5​
(−1)2−4(−1)⋅1​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−(−1)±5​​
Separate the solutionsu1​=2(−1)−(−1)+5​​,u2​=2(−1)−(−1)−5​​
u=2(−1)−(−1)+5​​:−21+5​​
2(−1)−(−1)+5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11+5​​
Multiply the numbers: 2⋅1=2=−21+5​​
Apply the fraction rule: −ba​=−ba​=−21+5​​
u=2(−1)−(−1)−5​​:25​−1​
2(−1)−(−1)−5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11−5​​
Multiply the numbers: 2⋅1=2=−21−5​​
Apply the fraction rule: −b−a​=ba​1−5​=−(5​−1)=25​−1​
The solutions to the quadratic equation are:u=−21+5​​,u=25​−1​
Substitute back u=sin(x)sin(x)=−21+5​​,sin(x)=25​−1​
sin(x)=−21+5​​,sin(x)=25​−1​
sin(x)=−21+5​​,0≤x<2π:No Solution
sin(x)=−21+5​​,0≤x<2π
−1≤sin(x)≤1NoSolution
sin(x)=25​−1​,0≤x<2π:x=arcsin(25​−1​),x=π−arcsin(25​−1​)
sin(x)=25​−1​,0≤x<2π
Apply trig inverse properties
sin(x)=25​−1​
General solutions for sin(x)=25​−1​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
Solutions for the range 0≤x<2πx=arcsin(25​−1​),x=π−arcsin(25​−1​)
Combine all the solutionsx=arcsin(25​−1​),x=π−arcsin(25​−1​)
Show solutions in decimal formx=0.66623…,x=π−0.66623…
Find the undefined points:x=2π​,x=23π​
Find the zeros of the denominatorcos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
0.66623…,2π​,π−0.66623…,23π​
Identify the intervals0<x<0.66623…,0.66623…<x<2π​,2π​<x<π−0.66623…,π−0.66623…<x<23π​,23π​<x<2π
Summarize in a table:cos2(x)−sin(x)cos(x)cos(x)cos2(x)−sin(x)​​x=0+++​0<x<0.66623…+++​x=0.66623…0+0​0.66623…<x<2π​−+−​x=2π​−0Undefined​2π​<x<π−0.66623…−−+​x=π−0.66623…0−0​π−0.66623…<x<23π​+−−​x=23π​+0Undefined​23π​<x<2π+++​x=2π+++​​
Identify the intervals that satisfy the required condition: <00.66623…<x<2π​orπ−0.66623…<x<23π​
Apply the periodicity of cos(x)−tan(x)0.66623…+2πn<x<2π​+2πnorπ−0.66623…+2πn<x<23π​+2πn
Combine the intervals−43π​+2πn<x<4π​+2πnand(0.66623…+2πn<x<2π​+2πnorπ−0.66623…+2πn<x<23π​+2πn)
Merge Overlapping Intervals0.66623…+2πn<x<4π​+2πnor45π​+2πn<x<23π​+2πn

Popular Examples

sin(x)0<= x<= 2pisin(x)0≤x≤2π-pi/2 <sin(x)< pi/2−2π​<sin(x)<2π​sin(2x)>= 0\land cos(x)>0sin(2x)≥0andcos(x)>0cos(x)= 5/13 \land sin(x)<0,tan(2x)cos(x)=135​andsin(x)<0,tan(2x)sin(θ)sec(θ)>0\land sin(θ)<4sin(θ)sec(θ)>0andsin(θ)<4
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024