Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin((sqrt(3))/2-(0.15)/x)>=-pi/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(23​​−x0.15​)≥−2π​

Solution

x≤−1.11961…orx≥0.08038…
+1
Interval Notation
(−∞,−1.11961…]∪[0.08038…,∞)
Solution steps
arcsin(23​​−x0.15​)≥−2π​
If arcsin(x)≥athen x≥sin(a)23​​−x0.15​≥sin(−2π​)
sin(−2π​)=−1
sin(−2π​)
Use the following property: sin(−x)=−sin(x)sin(−2π​)=−sin(2π​)=−sin(2π​)
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=−1
23​​−x0.15​≥−1
23​​−x0.15​≥−1:x<0orx≥0.08038…
23​​−x0.15​≥−1
Rewrite in standard form
23​​−x0.15​≥−1
Add 1 to both sides23​​−x0.15​+1≥−1+1
Simplify23​​−x0.15​+1≥0
Simplify 23​​−x0.15​+1:2x3​x−0.3+2x​
23​​−x0.15​+1
Convert element to fraction: 1=11​=23​​−x0.15​+11​
Least Common Multiplier of 2,x,1:2x
2,x,1
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,1:2
2,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 1
Multiply each factor the greatest number of times it occurs in either 2 or 1=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear in at least one of the factored expressions=2x
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2x
For 23​​:multiply the denominator and numerator by x23​​=2x3​x​
For x0.15​:multiply the denominator and numerator by 2x0.15​=x⋅20.15⋅2​=2x0.3​
For 11​:multiply the denominator and numerator by 2x11​=1⋅2x1⋅2x​=2x2x​
=2x3​x​−2x0.3​+2x2x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2x3​x−0.3+2x​
2x3​x−0.3+2x​≥0
Multiply both sides by 22x2(3​x−0.3+2x)​≥0⋅2
Simplifyx3​x−0.3+2x​≥0
x3​x−0.3+2x​≥0
Identify the intervals
Find the signs of the factors of x3​x−0.3+2x​
Find the signs of 3​x−0.3+2x
3​x−0.3+2x=0:x=0.08038…
3​x−0.3+2x=0
Move 0.3to the right side
3​x−0.3+2x=0
Add 0.3 to both sides3​x−0.3+2x+0.3=0+0.3
Simplify3​x+2x=0.3
3​x+2x=0.3
Factor 3​x+2x:(3​+2)x
3​x+2x
Factor out common term x=x(3​+2)
(3​+2)x=0.3
Divide both sides by 3​+2
(3​+2)x=0.3
Divide both sides by 3​+23​+2(3​+2)x​=3​+20.3​
Simplify
3​+2(3​+2)x​=3​+20.3​
Simplify 3​+2(3​+2)x​:x
3​+2(3​+2)x​
Cancel the common factor: 3​+2=x
Simplify 3​+20.3​:0.08038…
3​+20.3​
Convert element to a decimal form3​=1.73205…=1.73205…+20.3​
Add the numbers: 1.73205…+2=3.73205…=3.73205…0.3​
Divide the numbers: 3.73205…0.3​=0.08038…=0.08038…
x=0.08038…
x=0.08038…
x=0.08038…
3​x−0.3+2x<0:x<0.08038…
3​x−0.3+2x<0
Move 0.3to the right side
3​x−0.3+2x<0
Add 0.3 to both sides3​x−0.3+2x+0.3<0+0.3
Simplify3​x+2x<0.3
3​x+2x<0.3
Factor 3​x+2x:(3​+2)x
3​x+2x
Factor out common term x=x(3​+2)
(3​+2)x<0.3
Divide both sides by 3​+2
(3​+2)x<0.3
Divide both sides by 3​+23​+2(3​+2)x​<3​+20.3​
Simplify
3​+2(3​+2)x​<3​+20.3​
Simplify 3​+2(3​+2)x​:x
3​+2(3​+2)x​
Cancel the common factor: 3​+2=x
Simplify 3​+20.3​:0.08038…
3​+20.3​
Convert element to a decimal form3​=1.73205…=1.73205…+20.3​
Add the numbers: 1.73205…+2=3.73205…=3.73205…0.3​
Divide the numbers: 3.73205…0.3​=0.08038…=0.08038…
x<0.08038…
x<0.08038…
x<0.08038…
3​x−0.3+2x>0:x>0.08038…
3​x−0.3+2x>0
Move 0.3to the right side
3​x−0.3+2x>0
Add 0.3 to both sides3​x−0.3+2x+0.3>0+0.3
Simplify3​x+2x>0.3
3​x+2x>0.3
Factor 3​x+2x:(3​+2)x
3​x+2x
Factor out common term x=x(3​+2)
(3​+2)x>0.3
Divide both sides by 3​+2
(3​+2)x>0.3
Divide both sides by 3​+23​+2(3​+2)x​>3​+20.3​
Simplify
3​+2(3​+2)x​>3​+20.3​
Simplify 3​+2(3​+2)x​:x
3​+2(3​+2)x​
Cancel the common factor: 3​+2=x
Simplify 3​+20.3​:0.08038…
3​+20.3​
Convert element to a decimal form3​=1.73205…=1.73205…+20.3​
Add the numbers: 1.73205…+2=3.73205…=3.73205…0.3​
Divide the numbers: 3.73205…0.3​=0.08038…=0.08038…
x>0.08038…
x>0.08038…
x>0.08038…
Find the signs of x
x=0
x<0
x>0
Find singularity points
Find the zeros of the denominator x:x=0
Summarize in a table:3​x−0.3+2xxx3​x−0.3+2x​​x<0−−+​x=0−0Undefined​0<x<0.08038…−+−​x=0.08038…0+0​x>0.08038…+++​​
Identify the intervals that satisfy the required condition: ≥0x<0orx=0.08038…orx>0.08038…
Merge Overlapping Intervals
x<0orx=0.08038…orx>0.08038…
The union of two intervals is the set of numbers which are in either interval
x<0orx=0.08038…
x<0orx=0.08038…
The union of two intervals is the set of numbers which are in either interval
x<0orx=0.08038…orx>0.08038…
x<0orx≥0.08038…
x<0orx≥0.08038…
x<0orx≥0.08038…
x<0orx≥0.08038…
Domain of arcsin(23​​−x0.15​):x≤−1.11961…orx≥0.08038…
Domain definition
Find known functions domain restrictions:x≤−1.11961…orx≥0.08038…
arcsin(f(x))⇒−1≤f(x)≤1
Solve −1≤(23​​−x0.15​)≤1:x≤−1.11961…orx≥0.08038…
−1≤(23​​−x0.15​)≤1
If a≤u≤bthen a≤uandu≤b−1≤(23​​−x0.15​)and(23​​−x0.15​)≤1
−1≤23​​−x0.15​:x<0orx≥0.08038…
−1≤23​​−x0.15​
Switch sides23​​−x0.15​≥−1
Rewrite in standard form
23​​−x0.15​≥−1
Add 1 to both sides23​​−x0.15​+1≥−1+1
Simplify23​​−x0.15​+1≥0
Simplify 23​​−x0.15​+1:2x3​x−0.3+2x​
23​​−x0.15​+1
Convert element to fraction: 1=11​=23​​−x0.15​+11​
Least Common Multiplier of 2,x,1:2x
2,x,1
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,1:2
2,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 1
Multiply each factor the greatest number of times it occurs in either 2 or 1=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear in at least one of the factored expressions=2x
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2x
For 23​​:multiply the denominator and numerator by x23​​=2x3​x​
For x0.15​:multiply the denominator and numerator by 2x0.15​=x⋅20.15⋅2​=2x0.3​
For 11​:multiply the denominator and numerator by 2x11​=1⋅2x1⋅2x​=2x2x​
=2x3​x​−2x0.3​+2x2x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2x3​x−0.3+2x​
2x3​x−0.3+2x​≥0
Multiply both sides by 22x2(3​x−0.3+2x)​≥0⋅2
Simplifyx3​x−0.3+2x​≥0
x3​x−0.3+2x​≥0
Identify the intervals
Find the signs of the factors of x3​x−0.3+2x​
Find the signs of 3​x−0.3+2x
3​x−0.3+2x=0:x=0.08038…
3​x−0.3+2x=0
Move 0.3to the right side
3​x−0.3+2x=0
Add 0.3 to both sides3​x−0.3+2x+0.3=0+0.3
Simplify3​x+2x=0.3
3​x+2x=0.3
Factor 3​x+2x:(3​+2)x
3​x+2x
Factor out common term x=x(3​+2)
(3​+2)x=0.3
Divide both sides by 3​+2
(3​+2)x=0.3
Divide both sides by 3​+23​+2(3​+2)x​=3​+20.3​
Simplify
3​+2(3​+2)x​=3​+20.3​
Simplify 3​+2(3​+2)x​:x
3​+2(3​+2)x​
Cancel the common factor: 3​+2=x
Simplify 3​+20.3​:0.08038…
3​+20.3​
Convert element to a decimal form3​=1.73205…=1.73205…+20.3​
Add the numbers: 1.73205…+2=3.73205…=3.73205…0.3​
Divide the numbers: 3.73205…0.3​=0.08038…=0.08038…
x=0.08038…
x=0.08038…
x=0.08038…
3​x−0.3+2x<0:x<0.08038…
3​x−0.3+2x<0
Move 0.3to the right side
3​x−0.3+2x<0
Add 0.3 to both sides3​x−0.3+2x+0.3<0+0.3
Simplify3​x+2x<0.3
3​x+2x<0.3
Factor 3​x+2x:(3​+2)x
3​x+2x
Factor out common term x=x(3​+2)
(3​+2)x<0.3
Divide both sides by 3​+2
(3​+2)x<0.3
Divide both sides by 3​+23​+2(3​+2)x​<3​+20.3​
Simplify
3​+2(3​+2)x​<3​+20.3​
Simplify 3​+2(3​+2)x​:x
3​+2(3​+2)x​
Cancel the common factor: 3​+2=x
Simplify 3​+20.3​:0.08038…
3​+20.3​
Convert element to a decimal form3​=1.73205…=1.73205…+20.3​
Add the numbers: 1.73205…+2=3.73205…=3.73205…0.3​
Divide the numbers: 3.73205…0.3​=0.08038…=0.08038…
x<0.08038…
x<0.08038…
x<0.08038…
3​x−0.3+2x>0:x>0.08038…
3​x−0.3+2x>0
Move 0.3to the right side
3​x−0.3+2x>0
Add 0.3 to both sides3​x−0.3+2x+0.3>0+0.3
Simplify3​x+2x>0.3
3​x+2x>0.3
Factor 3​x+2x:(3​+2)x
3​x+2x
Factor out common term x=x(3​+2)
(3​+2)x>0.3
Divide both sides by 3​+2
(3​+2)x>0.3
Divide both sides by 3​+23​+2(3​+2)x​>3​+20.3​
Simplify
3​+2(3​+2)x​>3​+20.3​
Simplify 3​+2(3​+2)x​:x
3​+2(3​+2)x​
Cancel the common factor: 3​+2=x
Simplify 3​+20.3​:0.08038…
3​+20.3​
Convert element to a decimal form3​=1.73205…=1.73205…+20.3​
Add the numbers: 1.73205…+2=3.73205…=3.73205…0.3​
Divide the numbers: 3.73205…0.3​=0.08038…=0.08038…
x>0.08038…
x>0.08038…
x>0.08038…
Find the signs of x
x=0
x<0
x>0
Find singularity points
Find the zeros of the denominator x:x=0
Summarize in a table:3​x−0.3+2xxx3​x−0.3+2x​​x<0−−+​x=0−0Undefined​0<x<0.08038…−+−​x=0.08038…0+0​x>0.08038…+++​​
Identify the intervals that satisfy the required condition: ≥0x<0orx=0.08038…orx>0.08038…
Merge Overlapping Intervals
x<0orx=0.08038…orx>0.08038…
The union of two intervals is the set of numbers which are in either interval
x<0orx=0.08038…
x<0orx=0.08038…
The union of two intervals is the set of numbers which are in either interval
x<0orx=0.08038…orx>0.08038…
x<0orx≥0.08038…
x<0orx≥0.08038…
x<0orx≥0.08038…
23​​−x0.15​≤1:x≤−1.11961…orx>0
23​​−x0.15​≤1
Rewrite in standard form
23​​−x0.15​≤1
Subtract 1 from both sides23​​−x0.15​−1≤1−1
Simplify23​​−x0.15​−1≤0
Simplify 23​​−x0.15​−1:2x3​x−0.3−2x​
23​​−x0.15​−1
Convert element to fraction: 1=11​=23​​−x0.15​−11​
Least Common Multiplier of 2,x,1:2x
2,x,1
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,1:2
2,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 1
Multiply each factor the greatest number of times it occurs in either 2 or 1=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear in at least one of the factored expressions=2x
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2x
For 23​​:multiply the denominator and numerator by x23​​=2x3​x​
For x0.15​:multiply the denominator and numerator by 2x0.15​=x⋅20.15⋅2​=2x0.3​
For 11​:multiply the denominator and numerator by 2x11​=1⋅2x1⋅2x​=2x2x​
=2x3​x​−2x0.3​−2x2x​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2x3​x−0.3−2x​
2x3​x−0.3−2x​≤0
Multiply both sides by 22x2(3​x−0.3−2x)​≤0⋅2
Simplifyx3​x−0.3−2x​≤0
x3​x−0.3−2x​≤0
Identify the intervals
Find the signs of the factors of x3​x−0.3−2x​
Find the signs of 3​x−0.3−2x
3​x−0.3−2x=0:x=−1.11961…
3​x−0.3−2x=0
Move 0.3to the right side
3​x−0.3−2x=0
Add 0.3 to both sides3​x−0.3−2x+0.3=0+0.3
Simplify3​x−2x=0.3
3​x−2x=0.3
Factor 3​x−2x:(3​−2)x
3​x−2x
Factor out common term x=x(3​−2)
(3​−2)x=0.3
Divide both sides by 3​−2
(3​−2)x=0.3
Divide both sides by 3​−23​−2(3​−2)x​=3​−20.3​
Simplify
3​−2(3​−2)x​=3​−20.3​
Simplify 3​−2(3​−2)x​:x
3​−2(3​−2)x​
Cancel the common factor: 3​−2=x
Simplify 3​−20.3​:−1.11961…
3​−20.3​
Convert element to a decimal form3​=1.73205…=1.73205…−20.3​
Subtract the numbers: 1.73205…−2=−0.26794…=−0.26794…0.3​
Apply the fraction rule: −ba​=−ba​=−0.26794…0.3​
Divide the numbers: 0.26794…0.3​=1.11961…=−1.11961…
x=−1.11961…
x=−1.11961…
x=−1.11961…
3​x−0.3−2x<0:x>−1.11961…
3​x−0.3−2x<0
Move 0.3to the right side
3​x−0.3−2x<0
Add 0.3 to both sides3​x−0.3−2x+0.3<0+0.3
Simplify3​x−2x<0.3
3​x−2x<0.3
Factor 3​x−2x:(3​−2)x
3​x−2x
Factor out common term x=x(3​−2)
(3​−2)x<0.3
Multiply both sides by −1
(3​−2)x<0.3
Multiply both sides by -1 (reverse the inequality)(3​−2)x(−1)>0.3(−1)
Simplify−(3​−2)x>−0.3
−(3​−2)x>−0.3
Divide both sides by −3​+2
−(3​−2)x>−0.3
Divide both sides by −3​+2−3​+2−(3​−2)x​>−3​+2−0.3​
Simplify
−3​+2−(3​−2)x​>−3​+2−0.3​
Simplify −3​+2−(3​−2)x​:x
−3​+2−(3​−2)x​
Apply the fraction rule: b−a​=−ba​=−−3​+2(3​−2)x​
2−3​=−(3​−2)=−(3​−2)(3​−2)x​
Refine=−3​−2(3​−2)x​
Cancel the common factor: 3​−2=−(−x)
Apply rule −(−a)=a=x
Simplify −3​+2−0.3​:−1.11961…
−3​+2−0.3​
Apply the fraction rule: b−a​=−ba​=−−3​+20.3​
Convert element to a decimal form3​=1.73205…=−2−1.73205…0.3​
Add/Subtract the numbers: −1.73205…+2=0.26794…=−0.26794…0.3​
Divide the numbers: 0.26794…0.3​=1.11961…=−1.11961…
x>−1.11961…
x>−1.11961…
x>−1.11961…
3​x−0.3−2x>0:x<−1.11961…
3​x−0.3−2x>0
Move 0.3to the right side
3​x−0.3−2x>0
Add 0.3 to both sides3​x−0.3−2x+0.3>0+0.3
Simplify3​x−2x>0.3
3​x−2x>0.3
Factor 3​x−2x:(3​−2)x
3​x−2x
Factor out common term x=x(3​−2)
(3​−2)x>0.3
Multiply both sides by −1
(3​−2)x>0.3
Multiply both sides by -1 (reverse the inequality)(3​−2)x(−1)<0.3(−1)
Simplify−(3​−2)x<−0.3
−(3​−2)x<−0.3
Divide both sides by −3​+2
−(3​−2)x<−0.3
Divide both sides by −3​+2−3​+2−(3​−2)x​<−3​+2−0.3​
Simplify
−3​+2−(3​−2)x​<−3​+2−0.3​
Simplify −3​+2−(3​−2)x​:x
−3​+2−(3​−2)x​
Apply the fraction rule: b−a​=−ba​=−−3​+2(3​−2)x​
2−3​=−(3​−2)=−(3​−2)(3​−2)x​
Refine=−3​−2(3​−2)x​
Cancel the common factor: 3​−2=−(−x)
Apply rule −(−a)=a=x
Simplify −3​+2−0.3​:−1.11961…
−3​+2−0.3​
Apply the fraction rule: b−a​=−ba​=−−3​+20.3​
Convert element to a decimal form3​=1.73205…=−2−1.73205…0.3​
Add/Subtract the numbers: −1.73205…+2=0.26794…=−0.26794…0.3​
Divide the numbers: 0.26794…0.3​=1.11961…=−1.11961…
x<−1.11961…
x<−1.11961…
x<−1.11961…
Find the signs of x
x=0
x<0
x>0
Find singularity points
Find the zeros of the denominator x:x=0
Summarize in a table:3​x−0.3−2xxx3​x−0.3−2x​​x<−1.11961…+−−​x=−1.11961…0−0​−1.11961…<x<0−−+​x=0−0Undefined​x>0−+−​​
Identify the intervals that satisfy the required condition: ≤0x<−1.11961…orx=−1.11961…orx>0
Merge Overlapping Intervals
x≤−1.11961…orx>0
The union of two intervals is the set of numbers which are in either interval
x<−1.11961…orx=−1.11961…
x≤−1.11961…
The union of two intervals is the set of numbers which are in either interval
x≤−1.11961…orx>0
x≤−1.11961…orx>0
x≤−1.11961…orx>0
x≤−1.11961…orx>0
Combine the intervals(x<0orx≥0.08038…)and(x≤−1.11961…orx>0)
Merge Overlapping Intervals
x<0orx≥0.08038…andx≤−1.11961…orx>0
The intersection of two intervals is the set of numbers which are in both intervals
x<0orx≥0.08038…andx≤−1.11961…orx>0
x≤−1.11961…orx≥0.08038…
x≤−1.11961…orx≥0.08038…
Find undefined (singularity) points:x=0
arcsin(23​​−x0.15​)
Take the denominator(s) of arcsin(23​​−x0.15​) and compare to zero
x=0
The following points are undefinedx=0
Combine real regions and undefined points for final function domainx≤−1.11961…orx≥0.08038…
Combine the intervalsx<0orx≥0.08038…andx≤−1.11961…orx≥0.08038…
Merge Overlapping Intervals
x<0orx≥0.08038…andx≤−1.11961…orx≥0.08038…
The intersection of two intervals is the set of numbers which are in both intervals
x<0orx≥0.08038…andx≤−1.11961…orx≥0.08038…
x≤−1.11961…orx≥0.08038…
x≤−1.11961…orx≥0.08038…

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)(2sin(x)-sqrt(3))>= 0cos(x)(2sin(x)−3​)≥02sin^2(4x)>= 0.52sin2(4x)≥0.5cos(x)>-1cos(x)>−12(cos(3x))^2+sqrt(3)sin(6x)< 1/22(cos(3x))2+3​sin(6x)<21​sin(3x)<= 1/3sin(3x)≤31​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024