Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)(2sin(x)-sqrt(3))>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)(2sin(x)−3​)≥0

Solution

3π​+2πn≤x≤2π​+2πnor32π​+2πn≤x≤23π​+2πn
+2
Interval Notation
[3π​+2πn,2π​+2πn]∪[32π​+2πn,23π​+2πn]
Decimal
1.04719…+2πn≤x≤1.57079…+2πnor2.09439…+2πn≤x≤4.71238…+2πn
Solution steps
cos(x)(2sin(x)−3​)≥0
Periodicity of cos(x)(2sin(x)−3​):2π
cos(x)(2sin(x)−3​)is composed of the following functions and periods:cos(x)with periodicity of 2π
The compound periodicity is:=2π
To find the zeroes, set the inequality to zerocos(x)(2sin(x)−3​)=0
Solve cos(x)(2sin(x)−3​)=0for 0≤x<2π
cos(x)(2sin(x)−3​)=0
Solving each part separately
cos(x)=0:x=2π​orx=23π​
cos(x)=0,0≤x<2π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
2sin(x)−3​=0:x=3π​orx=32π​
2sin(x)−3​=0,0≤x<2π
Move 3​to the right side
2sin(x)−3​=0
Add 3​ to both sides2sin(x)−3​+3​=0+3​
Simplify2sin(x)=3​
2sin(x)=3​
Divide both sides by 2
2sin(x)=3​
Divide both sides by 222sin(x)​=23​​
Simplifysin(x)=23​​
sin(x)=23​​
General solutions for sin(x)=23​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=3π​+2πn,x=32π​+2πn
x=3π​+2πn,x=32π​+2πn
Solutions for the range 0≤x<2πx=3π​,x=32π​
Combine all the solutions3π​or2π​or32π​or23π​
The intervals between the zeros0<x<3π​,3π​<x<2π​,2π​<x<32π​,32π​<x<23π​,23π​<x<2π
Summarize in a table:cos(x)2sin(x)−3​cos(x)(2sin(x)−3​)​x=0+−−​0<x<3π​+−−​x=3π​+00​3π​<x<2π​+++​x=2π​0+0​2π​<x<32π​−+−​x=32π​−00​32π​<x<23π​−−+​x=23π​0−0​23π​<x<2π+−−​x=2π+−−​​
Identify the intervals that satisfy the required condition: ≥0x=3π​or3π​<x<2π​orx=2π​orx=32π​or32π​<x<23π​orx=23π​
Merge Overlapping Intervals
3π​≤x≤2π​or32π​≤x<23π​orx=23π​
The union of two intervals is the set of numbers which are in either interval
x=3π​or3π​<x<2π​
3π​≤x<2π​
The union of two intervals is the set of numbers which are in either interval
3π​≤x<2π​orx=2π​
3π​≤x≤2π​
The union of two intervals is the set of numbers which are in either interval
3π​≤x≤2π​orx=32π​
3π​≤x≤2π​orx=32π​
The union of two intervals is the set of numbers which are in either interval
3π​≤x≤2π​orx=32π​or32π​<x<23π​
3π​≤x≤2π​or32π​≤x<23π​
The union of two intervals is the set of numbers which are in either interval
3π​≤x≤2π​or32π​≤x<23π​orx=23π​
3π​≤x≤2π​or32π​≤x≤23π​
3π​≤x≤2π​or32π​≤x≤23π​
Apply the periodicity of cos(x)(2sin(x)−3​)3π​+2πn≤x≤2π​+2πnor32π​+2πn≤x≤23π​+2πn

Popular Examples

2sin^2(4x)>= 0.52sin2(4x)≥0.5cos(x)>-1cos(x)>−12(cos(3x))^2+sqrt(3)sin(6x)< 1/22(cos(3x))2+3​sin(6x)<21​sin(3x)<= 1/3sin(3x)≤31​tan(t)<-1/(sqrt(3))tan(t)<−3​1​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024