Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(3x)-cos^2(3x)<= (sqrt(3))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(3x)−cos2(3x)≤23​​

Solution

32π​n≤x≤3arcsin(22+3​​​)​+32π​nor3π−arcsin(22+3​​​)​+32π​n≤x≤3π+arcsin(22+3​​​)​+32π​nor3−arcsin(22+3​​​)+2π​+32π​n≤x<32π​+32π​n
+2
Interval Notation
​32π​n,3arcsin(22+3​​​)​+32π​n​∪​3π−arcsin(22+3​​​)​+32π​n,3π+arcsin(22+3​​​)​+32π​n​∪​3−arcsin(22+3​​​)+2π​+32π​n,32π​+32π​n​
Decimal
32π​n≤x≤0.43633…+32π​nor0.61086…+32π​n≤x≤1.48352…+32π​nor1.65806…+32π​n≤x<2.09439…+32π​n
Solution steps
sin2(3x)−cos2(3x)≤23​​
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)sin2(3x)−(1−sin2(3x))≤23​​
Simplify2sin2(3x)−1≤23​​
Rewrite in standard form
2sin2(3x)−1≤23​​
Subtract 23​​ from both sides2sin2(3x)−1−23​​≤23​​−23​​
Simplify2sin2(3x)−1−23​​≤0
Multiply both sides by 22sin2(3x)⋅2−1⋅2−23​​⋅2≤0⋅2
4sin2(3x)−2−3​≤0
4sin2(3x)−2−3​≤0
Identify the intervals
Find the signs of the factors of 4sin2(3x)−2−3​
Find the signs of 4sin2(3x)−2−3​
4sin2(3x)−2−3​=0:sin(3x)=−21​+43​​​orsin(3x)=21​+43​​​
4sin2(3x)−2−3​=0
Move 2to the right side
4sin2(3x)−2−3​=0
Add 2 to both sides4sin2(3x)−2−3​+2=0+2
Simplify4sin2(3x)−3​=2
4sin2(3x)−3​=2
Move 3​to the right side
4sin2(3x)−3​=2
Add 3​ to both sides4sin2(3x)−3​+3​=2+3​
Simplify4sin2(3x)=2+3​
4sin2(3x)=2+3​
Divide both sides by 4
4sin2(3x)=2+3​
Divide both sides by 444sin2(3x)​=42​+43​​
Simplifysin2(3x)=21​+43​​
sin2(3x)=21​+43​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
sin(3x)=21​+43​​​,sin(3x)=−21​+43​​​
4sin2(3x)−2−3​<0:−21​+43​​​<sin(3x)<21​+43​​​
4sin2(3x)−2−3​<0
Identify the intervals
Find the signs of the factors of 4sin2(3x)−2−3​
Find the signs of 4sin2(3x)−2−3​
4sin2(3x)−2−3​=0:sin(3x)=−21​+43​​​orsin(3x)=21​+43​​​
4sin2(3x)−2−3​=0
Move 2to the right side
4sin2(3x)−2−3​=0
Add 2 to both sides4sin2(3x)−2−3​+2=0+2
Simplify4sin2(3x)−3​=2
4sin2(3x)−3​=2
Move 3​to the right side
4sin2(3x)−3​=2
Add 3​ to both sides4sin2(3x)−3​+3​=2+3​
Simplify4sin2(3x)=2+3​
4sin2(3x)=2+3​
Divide both sides by 4
4sin2(3x)=2+3​
Divide both sides by 444sin2(3x)​=42​+43​​
Simplifysin2(3x)=21​+43​​
sin2(3x)=21​+43​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
sin(3x)=21​+43​​​,sin(3x)=−21​+43​​​
Summarize in a table:4sin2(3x)−2−3​4sin2(3x)−2−3​​sin(3x)<−21​+43​​​++​sin(3x)=−21​+43​​​00​−21​+43​​​<sin(3x)<21​+43​​​−−​sin(3x)=21​+43​​​00​sin(3x)>21​+43​​​++​​
Identify the intervals that satisfy the required condition: <0−21​+43​​​<sin(3x)<21​+43​​​
−21​+43​​​<sin(3x)<21​+43​​​
4sin2(3x)−2−3​>0:sin(3x)<−21​+43​​​orsin(3x)>21​+43​​​
4sin2(3x)−2−3​>0
Identify the intervals
Find the signs of the factors of 4sin2(3x)−2−3​
Find the signs of 4sin2(3x)−2−3​
4sin2(3x)−2−3​=0:sin(3x)=−21​+43​​​orsin(3x)=21​+43​​​
4sin2(3x)−2−3​=0
Move 2to the right side
4sin2(3x)−2−3​=0
Add 2 to both sides4sin2(3x)−2−3​+2=0+2
Simplify4sin2(3x)−3​=2
4sin2(3x)−3​=2
Move 3​to the right side
4sin2(3x)−3​=2
Add 3​ to both sides4sin2(3x)−3​+3​=2+3​
Simplify4sin2(3x)=2+3​
4sin2(3x)=2+3​
Divide both sides by 4
4sin2(3x)=2+3​
Divide both sides by 444sin2(3x)​=42​+43​​
Simplifysin2(3x)=21​+43​​
sin2(3x)=21​+43​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
sin(3x)=21​+43​​​,sin(3x)=−21​+43​​​
Summarize in a table:4sin2(3x)−2−3​4sin2(3x)−2−3​​sin(3x)<−21​+43​​​++​sin(3x)=−21​+43​​​00​−21​+43​​​<sin(3x)<21​+43​​​−−​sin(3x)=21​+43​​​00​sin(3x)>21​+43​​​++​​
Identify the intervals that satisfy the required condition: >0sin(3x)<−21​+43​​​orsin(3x)>21​+43​​​
sin(3x)<−21​+43​​​orsin(3x)>21​+43​​​
Summarize in a table:4sin2(3x)−2−3​4sin2(3x)−2−3​​sin(3x)<−21​+43​​​++​sin(3x)=−21​+43​​​00​−21​+43​​​<sin(3x)<21​+43​​​−−​sin(3x)=21​+43​​​00​sin(3x)>21​+43​​​++​​
Identify the intervals that satisfy the required condition: ≤0sin(3x)=−21​+43​​​or−21​+43​​​<sin(3x)<21​+43​​​orsin(3x)=21​+43​​​
Merge Overlapping Intervals
−21​+43​​​≤sin(3x)<21​+43​​​orsin(3x)=21​+43​​​
The union of two intervals is the set of numbers which are in either interval
sin(3x)=−21​+43​​​or−21​+43​​​<sin(3x)<21​+43​​​
−21​+43​​​≤sin(3x)<21​+43​​​
The union of two intervals is the set of numbers which are in either interval
−21​+43​​​≤sin(3x)<21​+43​​​orsin(3x)=21​+43​​​
−21​+43​​​≤sin(3x)≤21​+43​​​
−21​+43​​​≤sin(3x)≤21​+43​​​
−21​+43​​​≤sin(3x)≤21​+43​​​
If a≤u≤bthen a≤uandu≤b−21​+43​​​≤sin(3x)andsin(3x)≤21​+43​​​
−21​+43​​​≤sin(3x):−3arcsin(22+3​​​)​+32π​n≤x≤3π+arcsin(22+3​​​)​+32π​n
−21​+43​​​≤sin(3x)
Switch sidessin(3x)≥−21​+43​​​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin​−21​+43​​​​+2πn≤3x≤π−arcsin​−21​+43​​​​+2πn
If a≤u≤bthen a≤uandu≤barcsin​−21​+43​​​​+2πn≤3xand3x≤π−arcsin​−21​+43​​​​+2πn
arcsin​−21​+43​​​​+2πn≤3x:x≥−3arcsin(22+3​​​)​+32π​n
arcsin​−21​+43​​​​+2πn≤3x
Switch sides3x≥arcsin​−21​+43​​​​+2πn
Simplify arcsin​−21​+43​​​​+2πn:−arcsin​21​+43​​​​+2πn
arcsin​−21​+43​​​​+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin​−21​+43​​​​=−arcsin​21​+43​​​​=−arcsin​21​+43​​​​+2πn
3x≥−arcsin​21​+43​​​​+2πn
Divide both sides by 3
3x≥−arcsin​21​+43​​​​+2πn
Divide both sides by 333x​≥−3arcsin(21​+43​​​)​+32πn​
Simplifyx≥−3arcsin(21​+43​​​)​+32πn​
Simplify −3arcsin(21​+43​​​)​:−3arcsin(22+3​​​)​
−3arcsin(21​+43​​​)​
21​+43​​​=22+3​​​
21​+43​​​
Join 21​+43​​:42+3​​
21​+43​​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​+43​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42+3​​
=42+3​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​2+3​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=22+3​​​
=−3arcsin(22+3​​​)​
x≥−3arcsin(22+3​​​)​+32π​n
x≥−3arcsin(22+3​​​)​+32π​n
3x≤π−arcsin​−21​+43​​​​+2πn:x≤3π+arcsin(22+3​​​)​+32π​n
3x≤π−arcsin​−21​+43​​​​+2πn
Simplify π−arcsin​−21​+43​​​​+2πn:π+arcsin​21​+43​​​​+2πn
π−arcsin​−21​+43​​​​+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin​−21​+43​​​​=−arcsin​21​+43​​​​=π−​−arcsin​21​+43​​​​​+2πn
Apply rule −(−a)=a=π+arcsin​21​+43​​​​+2πn
3x≤π+arcsin​21​+43​​​​+2πn
Divide both sides by 3
3x≤π+arcsin​21​+43​​​​+2πn
Divide both sides by 333x​≤3π​+3arcsin(21​+43​​​)​+32πn​
Simplifyx≤3π​+3arcsin(21​+43​​​)​+32πn​
Simplify 3π​+3arcsin(21​+43​​​)​:3π+arcsin(22+3​​​)​
3π​+3arcsin(21​+43​​​)​
Combine the fractions 3π​+3arcsin(21​+43​​​)​:3π+arcsin(22+3​​​)​
Apply rule ca​±cb​=ca±b​=3π+arcsin(21​+43​​​)​
21​+43​​​=22+3​​​
21​+43​​​
Join 21​+43​​:42+3​​
21​+43​​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​+43​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42+3​​
=42+3​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​2+3​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=22+3​​​
=22+3​​​
=3π+arcsin(22+3​​​)​
x≤3π+arcsin(22+3​​​)​+32π​n
x≤3π+arcsin(22+3​​​)​+32π​n
x≤3π+arcsin(22+3​​​)​+32π​n
Combine the intervalsx≥−3arcsin(22+3​​​)​+32π​nandx≤3π+arcsin(22+3​​​)​+32π​n
Merge Overlapping Intervals−3arcsin(22+3​​​)​+32π​n≤x≤3π+arcsin(22+3​​​)​+32π​n
sin(3x)≤21​+43​​​:3−π−arcsin(22+3​​​)​+32π​n≤x≤3arcsin(22+3​​​)​+32π​n
sin(3x)≤21​+43​​​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin​21​+43​​​​+2πn≤3x≤arcsin​21​+43​​​​+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin​21​+43​​​​+2πn≤3xand3x≤arcsin​21​+43​​​​+2πn
−π−arcsin​21​+43​​​​+2πn≤3x:x≥3−π−arcsin(22+3​​​)​+32π​n
−π−arcsin​21​+43​​​​+2πn≤3x
Switch sides3x≥−π−arcsin​21​+43​​​​+2πn
Divide both sides by 3
3x≥−π−arcsin​21​+43​​​​+2πn
Divide both sides by 333x​≥−3π​−3arcsin(21​+43​​​)​+32πn​
Simplifyx≥−3π​−3arcsin(21​+43​​​)​+32πn​
Simplify −3π​−3arcsin(21​+43​​​)​:3−π−arcsin(22+3​​​)​
−3π​−3arcsin(21​+43​​​)​
Combine the fractions −3π​−3arcsin(21​+43​​​)​:3−π−arcsin(22+3​​​)​
Apply rule ca​±cb​=ca±b​=3−π−arcsin(21​+43​​​)​
21​+43​​​=22+3​​​
21​+43​​​
Join 21​+43​​:42+3​​
21​+43​​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​+43​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42+3​​
=42+3​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​2+3​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=22+3​​​
=22+3​​​
=3−π−arcsin(22+3​​​)​
x≥3−π−arcsin(22+3​​​)​+32π​n
x≥3−π−arcsin(22+3​​​)​+32π​n
x≥3−π−arcsin(22+3​​​)​+32π​n
3x≤arcsin​21​+43​​​​+2πn:x≤3arcsin(22+3​​​)​+32π​n
3x≤arcsin​21​+43​​​​+2πn
Divide both sides by 3
3x≤arcsin​21​+43​​​​+2πn
Divide both sides by 333x​≤3arcsin(21​+43​​​)​+32πn​
Simplifyx≤3arcsin(21​+43​​​)​+32πn​
Simplify 3arcsin(21​+43​​​)​:3arcsin(22+3​​​)​
3arcsin(21​+43​​​)​
21​+43​​​=22+3​​​
21​+43​​​
Join 21​+43​​:42+3​​
21​+43​​
Least Common Multiplier of 2,4:4
2,4
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 2 or 4=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​+43​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42+3​​
=42+3​​​
Apply radical rule: nba​​=nb​na​​, assuming a≥0,b≥0=4​2+3​​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: nan​=a22​=2=2
=22+3​​​
=3arcsin(22+3​​​)​
x≤3arcsin(22+3​​​)​+32π​n
x≤3arcsin(22+3​​​)​+32π​n
Combine the intervalsx≥3−π−arcsin(22+3​​​)​+32π​nandx≤3arcsin(22+3​​​)​+32π​n
Merge Overlapping Intervals3−π−arcsin(22+3​​​)​+32π​n≤x≤3arcsin(22+3​​​)​+32π​n
Combine the intervals−3arcsin(22+3​​​)​+32π​n≤x≤3π+arcsin(22+3​​​)​+32π​nand3−π−arcsin(22+3​​​)​+32π​n≤x≤3arcsin(22+3​​​)​+32π​n
Merge Overlapping Intervals32π​n≤x≤3arcsin(22+3​​​)​+32π​nor3π−arcsin(22+3​​​)​+32π​n≤x≤3π+arcsin(22+3​​​)​+32π​nor3−arcsin(22+3​​​)+2π​+32π​n≤x<32π​+32π​n

Popular Examples

solvefor z,tan(z)> pi/4solveforz,tan(z)>4π​tan^3(x)+sqrt(3)tan(x)<0tan3(x)+3​tan(x)<0sin(2x)<(sqrt(3))/2sin(2x)<23​​solvefor x,sin(ax+(1-a)y)<= 0solveforx,sin(ax+(1−a)y)≤02sin(x/2)+1>02sin(2x​)+1>0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024