Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)*sin(x)> 1/(2cos(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)⋅sin(x)>2cos(x)1​

Solution

4π​+2πn<x<2π​+2πnor43π​+2πn<x<45π​+2πnor23π​+2πn<x<47π​+2πn
+2
Interval Notation
(4π​+2πn,2π​+2πn)∪(43π​+2πn,45π​+2πn)∪(23π​+2πn,47π​+2πn)
Decimal
0.78539…+2πn<x<1.57079…+2πnor2.35619…+2πn<x<3.92699…+2πnor4.71238…+2πn<x<5.49778…+2πn
Solution steps
tan(x)sin(x)>2cos(x)1​
Move 2cos(x)1​to the left side
tan(x)sin(x)>2cos(x)1​
Subtract 2cos(x)1​ from both sidestan(x)sin(x)−2cos(x)1​>2cos(x)1​−2cos(x)1​
tan(x)sin(x)−2cos(x)1​>0
tan(x)sin(x)−2cos(x)1​>0
Periodicity of tan(x)sin(x)−2cos(x)1​:2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodstan(x)sin(x),2cos(x)1​
Periodicity of tan(x)sin(x):2π
tan(x)sin(x)is composed of the following functions and periods:tan(x)with periodicity of π
The compound periodicity is:2π
Periodicity of 2cos(x)1​:2π
Periodicity of a⋅cos(bx+c)+d=∣b∣periodicityofcos(x)​Periodicity of cos(x)is 2π=∣1∣2π​
Simplify=2π
Combine periods: 2π,2π
=2π
Express with sin, cos
tan(x)sin(x)−2cos(x)1​>0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x)sin(x)​sin(x)−2cos(x)1​>0
cos(x)sin(x)​sin(x)−2cos(x)1​>0
Simplify cos(x)sin(x)​sin(x)−2cos(x)1​:2cos(x)2sin2(x)−1​
cos(x)sin(x)​sin(x)−2cos(x)1​
cos(x)sin(x)​sin(x)=cos(x)sin2(x)​
cos(x)sin(x)​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)sin(x)​
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=cos(x)sin2(x)​
=cos(x)sin2(x)​−2cos(x)1​
Least Common Multiplier of cos(x),2cos(x):2cos(x)
cos(x),2cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or 2cos(x)=2cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2cos(x)
For cos(x)sin2(x)​:multiply the denominator and numerator by 2cos(x)sin2(x)​=cos(x)⋅2sin2(x)⋅2​
=cos(x)⋅2sin2(x)⋅2​−2cos(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2cos(x)sin2(x)⋅2−1​
2cos(x)2sin2(x)−1​>0
Find the zeroes and undifined points of 2cos(x)2sin2(x)−1​for 0≤x<2π
To find the zeroes, set the inequality to zero2cos(x)2sin2(x)−1​=0
2cos(x)2sin2(x)−1​=0,0≤x<2π:x=4π​,x=43π​,x=45π​,x=47π​
2cos(x)2sin2(x)−1​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=02sin2(x)−1=0
Solve by substitution
2sin2(x)−1=0
Let: sin(x)=u2u2−1=0
2u2−1=0:u=21​​,u=−21​​
2u2−1=0
Move 1to the right side
2u2−1=0
Add 1 to both sides2u2−1+1=0+1
Simplify2u2=1
2u2=1
Divide both sides by 2
2u2=1
Divide both sides by 222u2​=21​
Simplifyu2=21​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
Substitute back u=sin(x)sin(x)=21​​,sin(x)=−21​​
sin(x)=21​​,sin(x)=−21​​
sin(x)=21​​,0≤x<2π:x=4π​,x=43π​
sin(x)=21​​,0≤x<2π
General solutions for sin(x)=21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Solutions for the range 0≤x<2πx=4π​,x=43π​
sin(x)=−21​​,0≤x<2π:x=45π​,x=47π​
sin(x)=−21​​,0≤x<2π
General solutions for sin(x)=−21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
Solutions for the range 0≤x<2πx=45π​,x=47π​
Combine all the solutionsx=4π​,x=43π​,x=45π​,x=47π​
Find the undefined points:x=2π​,x=23π​
Find the zeros of the denominator2cos(x)=0
Divide both sides by 2
2cos(x)=0
Divide both sides by 222cos(x)​=20​
Simplifycos(x)=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
4π​,2π​,43π​,45π​,23π​,47π​
Identify the intervals0<x<4π​,4π​<x<2π​,2π​<x<43π​,43π​<x<45π​,45π​<x<23π​,23π​<x<47π​,47π​<x<2π
Summarize in a table:2sin2(x)−1cos(x)2cos(x)2sin2(x)−1​​x=0−+−​0<x<4π​−+−​x=4π​0+0​4π​<x<2π​+++​x=2π​+0Undefined​2π​<x<43π​+−−​x=43π​0−0​43π​<x<45π​−−+​x=45π​0−0​45π​<x<23π​+−−​x=23π​+0Undefined​23π​<x<47π​+++​x=47π​0+0​47π​<x<2π−+−​x=2π−+−​​
Identify the intervals that satisfy the required condition: >04π​<x<2π​or43π​<x<45π​or23π​<x<47π​
Apply the periodicity of tan(x)sin(x)−2cos(x)1​4π​+2πn<x<2π​+2πnor43π​+2πn<x<45π​+2πnor23π​+2πn<x<47π​+2πn

Popular Examples

solvefor c,sin(xcos(2x))<= 1solveforc,sin(xcos(2x))≤1cos(5x)cos(x/4)-sin(5x)sin(x/4)>=-(sqrt(2))/2cos(5x)cos(4x​)−sin(5x)sin(4x​)≥−22​​2sin(x/2)-1>= 02sin(2x​)−1≥0sin(2x-(3pi)/2)<= 0sin(2x−23π​)≤0tan(-3x)<1tan(−3x)<1
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024