Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(x)+sin(x)+1>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)+sin(x)+1≥0

Solution

Trueforallx∈R
+1
Interval Notation
(−∞,∞)
Solution steps
cos2(x)+sin(x)+1≥0
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)1−sin2(x)+sin(x)+1≥0
Simplifysin(x)−sin2(x)+2≥0
Let: u=sin(x)u−u2+2≥0
u−u2+2≥0:−1≤u≤2
u−u2+2≥0
Factor u−u2+2:−(u+1)(u−2)
u−u2+2
Factor out common term −1=−(u2−u−2)
Factor u2−u−2:(u+1)(u−2)
u2−u−2
Write in the standard form ax2+bx+c=u2−u−2
Break the expression into groups
u2−u−2
Definition
Factors of 2:1,2
2
Divisors (Factors)
Find the Prime factors of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Add 1 1
The factors of 21,2
Negative factors of 2:−1,−2
Multiply the factors by −1 to get the negative factors−1,−2
For every two factors such that u∗v=−2,check if u+v=−1
Check u=1,v=−2:u∗v=−2,u+v=−1⇒TrueCheck u=2,v=−1:u∗v=−2,u+v=1⇒False
u=1,v=−2
Group into (ax2+ux)+(vx+c)(u2+u)+(−2u−2)
=(u2+u)+(−2u−2)
Factor out ufrom u2+u:u(u+1)
u2+u
Apply exponent rule: ab+c=abacu2=uu=uu+u
Factor out common term u=u(u+1)
Factor out −2from −2u−2:−2(u+1)
−2u−2
Factor out common term −2=−2(u+1)
=u(u+1)−2(u+1)
Factor out common term u+1=(u+1)(u−2)
=−(u+1)(u−2)
−(u+1)(u−2)≥0
Multiply both sides by −1 (reverse the inequality)(−(u+1)(u−2))(−1)≤0⋅(−1)
Simplify(u+1)(u−2)≤0
Identify the intervals
Find the signs of the factors of (u+1)(u−2)
Find the signs of u+1
u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
u+1<0:u<−1
u+1<0
Move 1to the right side
u+1<0
Subtract 1 from both sidesu+1−1<0−1
Simplifyu<−1
u<−1
u+1>0:u>−1
u+1>0
Move 1to the right side
u+1>0
Subtract 1 from both sidesu+1−1>0−1
Simplifyu>−1
u>−1
Find the signs of u−2
u−2=0:u=2
u−2=0
Move 2to the right side
u−2=0
Add 2 to both sidesu−2+2=0+2
Simplifyu=2
u=2
u−2<0:u<2
u−2<0
Move 2to the right side
u−2<0
Add 2 to both sidesu−2+2<0+2
Simplifyu<2
u<2
u−2>0:u>2
u−2>0
Move 2to the right side
u−2>0
Add 2 to both sidesu−2+2>0+2
Simplifyu>2
u>2
Summarize in a table:u+1u−2(u+1)(u−2)​u<−1−−+​u=−10−0​−1<u<2+−−​u=2+00​u>2+++​​
Identify the intervals that satisfy the required condition: ≤0u=−1or−1<u<2oru=2
Merge Overlapping Intervals
−1≤u<2oru=2
The union of two intervals is the set of numbers which are in either interval
u=−1or−1<u<2
−1≤u<2
The union of two intervals is the set of numbers which are in either interval
−1≤u<2oru=2
−1≤u≤2
−1≤u≤2
−1≤u≤2
−1≤u≤2
Substitute back u=sin(x)−1≤sin(x)≤2
If a≤u≤bthen a≤uandu≤b−1≤sin(x)andsin(x)≤2
−1≤sin(x):True for all x∈R
−1≤sin(x)
Switch sidessin(x)≥−1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)≥−1and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy≥−1and−1≤y≤1
Merge Overlapping Intervals
y≥−1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≥−1and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
sin(x)≤2:True for all x∈R
sin(x)≤2
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)≤2and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy≤2and−1≤y≤1
Merge Overlapping Intervals
y≤2and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≤2and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervalsTrueforallx∈RandTrueforallx∈R
Merge Overlapping Intervals
Trueforallx∈RandTrueforallx∈R
The intersection of two intervals is the set of numbers which are in both intervals
True for all x∈RandTrue for all x∈R
Trueforallx∈R
Trueforallx
Trueforallx∈R

Popular Examples

sin(3x)-(sqrt(2))/2 >= 0sin(3x)−22​​≥0cos(2x)<cos(4x)cos(2x)<cos(4x)(sin(x))/(4cos^2(x)-1)<04cos2(x)−1sin(x)​<0(arctan(x))>0(arctan(x))>0tan(θ)<0,sin(θ)>0tan(θ)<0,sin(θ)>0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024