Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)*(2tan(x))/(1-tan^2(x))>1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)⋅1−tan2(x)2tan(x)​>1

Solution

6π​+πn<x<4π​+πnor43π​+πn<x<65π​+πn
+2
Interval Notation
(6π​+πn,4π​+πn)∪(43π​+πn,65π​+πn)
Decimal
0.52359…+πn<x<0.78539…+πnor2.35619…+πn<x<2.61799…+πn
Solution steps
tan(x)1−tan2(x)2tan(x)​>1
Let: u=tan(x)u1−u22u​>1
u1−u22u​>1:−1<u<−33​​or33​​<u<1
u1−u22u​>1
Rewrite in standard form
u1−u22u​>1
Subtract 1 from both sidesu1−u22u​−1>1−1
Simplifyu1−u22u​−1>1−1
Simplify u1−u22u​−1:1−u22u2​−1
u1−u22u​−1
u1−u22u​=1−u22u2​
u1−u22u​
Multiply fractions: a⋅cb​=ca⋅b​=1−u22uu​
2uu=2u2
2uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=2u1+1
Add the numbers: 1+1=2=2u2
=1−u22u2​
=−u2+12u2​−1
1−u22u2​−1>0
Simplify 1−u22u2​−1:1−u23u2−1​
1−u22u2​−1
Convert element to fraction: 1=1−u21(1−u2)​=1−u22u2​−1−u21⋅(1−u2)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−u22u2−1⋅(1−u2)​
Multiply: 1⋅(1−u2)=(1−u2)=1−u22u2−(−u2+1)​
Expand 2u2−(1−u2):3u2−1
2u2−(1−u2)
−(1−u2):−1+u2
−(1−u2)
Distribute parentheses=−(1)−(−u2)
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+u2
=2u2−1+u2
Simplify 2u2−1+u2:3u2−1
2u2−1+u2
Group like terms=2u2+u2−1
Add similar elements: 2u2+u2=3u2=3u2−1
=3u2−1
=1−u23u2−1​
1−u23u2−1​>0
1−u23u2−1​>0
Factor 1−u23u2−1​:−(u+1)(u−1)(3​u+1)(3​u−1)​
1−u23u2−1​
Factor −u2+1:−(u+1)(u−1)
−u2+1
Factor out common term −1=−(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=−(u+1)(u−1)
=−(u+1)(u−1)3u2−1​
Factor 3u2−1:(3​u+1)(3​u−1)
3u2−1
Rewrite 3u2−1 as (3​u)2−12
3u2−1
Apply radical rule: a=(a​)23=(3​)2=(3​)2u2−1
Rewrite 1 as 12=(3​)2u2−12
Apply exponent rule: ambm=(ab)m(3​)2u2=(3​u)2=(3​u)2−12
=(3​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​u)2−12=(3​u+1)(3​u−1)=(3​u+1)(3​u−1)
=−(u+1)(u−1)(3​u+1)(3​u−1)​
−(u+1)(u−1)(3​u+1)(3​u−1)​>0
Multiply both sides by −1 (reverse the inequality)−(u+1)(u−1)(3​u+1)(3​u−1)(−1)​<0⋅(−1)
Simplify(u+1)(u−1)(3​u+1)(3​u−1)​<0
Identify the intervals
Find the signs of the factors of (u+1)(u−1)(3​u+1)(3​u−1)​
Find the signs of 3​u+1
3​u+1=0:u=−33​​
3​u+1=0
Move 1to the right side
3​u+1=0
Subtract 1 from both sides3​u+1−1=0−1
Simplify3​u=−1
3​u=−1
Divide both sides by 3​
3​u=−1
Divide both sides by 3​3​3​u​=3​−1​
Simplify
3​3​u​=3​−1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
u=−33​​
u=−33​​
u=−33​​
3​u+1<0:u<−33​​
3​u+1<0
Move 1to the right side
3​u+1<0
Subtract 1 from both sides3​u+1−1<0−1
Simplify3​u<−1
3​u<−1
Divide both sides by 3​
3​u<−1
Divide both sides by 3​3​3​u​<3​−1​
Simplify
3​3​u​<3​−1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
u<−33​​
u<−33​​
u<−33​​
3​u+1>0:u>−33​​
3​u+1>0
Move 1to the right side
3​u+1>0
Subtract 1 from both sides3​u+1−1>0−1
Simplify3​u>−1
3​u>−1
Divide both sides by 3​
3​u>−1
Divide both sides by 3​3​3​u​>3​−1​
Simplify
3​3​u​>3​−1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
u>−33​​
u>−33​​
u>−33​​
Find the signs of 3​u−1
3​u−1=0:u=33​​
3​u−1=0
Move 1to the right side
3​u−1=0
Add 1 to both sides3​u−1+1=0+1
Simplify3​u=1
3​u=1
Divide both sides by 3​
3​u=1
Divide both sides by 3​3​3​u​=3​1​
Simplify
3​3​u​=3​1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
u=33​​
u=33​​
u=33​​
3​u−1<0:u<33​​
3​u−1<0
Move 1to the right side
3​u−1<0
Add 1 to both sides3​u−1+1<0+1
Simplify3​u<1
3​u<1
Divide both sides by 3​
3​u<1
Divide both sides by 3​3​3​u​<3​1​
Simplify
3​3​u​<3​1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
u<33​​
u<33​​
u<33​​
3​u−1>0:u>33​​
3​u−1>0
Move 1to the right side
3​u−1>0
Add 1 to both sides3​u−1+1>0+1
Simplify3​u>1
3​u>1
Divide both sides by 3​
3​u>1
Divide both sides by 3​3​3​u​>3​1​
Simplify
3​3​u​>3​1​
Simplify 3​3​u​:u
3​3​u​
Cancel the common factor: 3​=u
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
u>33​​
u>33​​
u>33​​
Find the signs of u+1
u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
u+1<0:u<−1
u+1<0
Move 1to the right side
u+1<0
Subtract 1 from both sidesu+1−1<0−1
Simplifyu<−1
u<−1
u+1>0:u>−1
u+1>0
Move 1to the right side
u+1>0
Subtract 1 from both sidesu+1−1>0−1
Simplifyu>−1
u>−1
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Find singularity points
Find the zeros of the denominator (u+1)(u−1):u=−1,u=1
(u+1)(u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0oru−1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
The solutions to the quadratic equation are:u=−1,u=1
Summarize in a table:3​u+13​u−1u+1u−1(u+1)(u−1)(3​u+1)(3​u−1)​​u<−1−−−−+​u=−1−−0−Undefined​−1<u<−33​​−−+−−​u=−33​​0−+−0​−33​​<u<33​​+−+−+​u=33​​+0+−0​33​​<u<1+++−−​u=1+++0Undefined​u>1+++++​​
Identify the intervals that satisfy the required condition: <0−1<u<−33​​or33​​<u<1
−1<u<−33​​or33​​<u<1
−1<u<−33​​or33​​<u<1
Substitute back u=tan(x)−1<tan(x)<−33​​or33​​<tan(x)<1
−1<tan(x)<−33​​:43π​+πn<x<65π​+πn
−1<tan(x)<−33​​
If a<u<bthen a<uandu<b−1<tan(x)andtan(x)<−33​​
−1<tan(x):−4π​+πn<x<2π​+πn
−1<tan(x)
Switch sidestan(x)>−1
If tan(x)>athen arctan(a)+πn<x<2π​+πnarctan(−1)+πn<x<2π​+πn
Simplify arctan(−1):−4π​
arctan(−1)
Use the following property: arctan(−x)=−arctan(x)arctan(−1)=−arctan(1)=−arctan(1)
Use the following trivial identity:arctan(1)=4π​
arctan(1)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=4π​
=−4π​
−4π​+πn<x<2π​+πn
tan(x)<−33​​:−2π​+πn<x<−6π​+πn
tan(x)<−33​​
If tan(x)<athen −2π​+πn<x<arctan(a)+πn−2π​+πn<x<arctan(−33​​)+πn
Simplify arctan(−33​​):−6π​
arctan(−33​​)
Use the following property: arctan(−x)=−arctan(x)arctan(−33​​)=−arctan(33​​)=−arctan(33​​)
Use the following trivial identity:arctan(33​​)=6π​
arctan(33​​)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=6π​
=−6π​
−2π​+πn<x<−6π​+πn
Combine the intervals−4π​+πn<x<2π​+πnand−2π​+πn<x<−6π​+πn
Merge Overlapping Intervals43π​+πn<x<65π​+πn
33​​<tan(x)<1:6π​+πn<x<4π​+πn
33​​<tan(x)<1
If a<u<bthen a<uandu<b33​​<tan(x)andtan(x)<1
33​​<tan(x):6π​+πn<x<2π​+πn
33​​<tan(x)
Switch sidestan(x)>33​​
If tan(x)>athen arctan(a)+πn<x<2π​+πnarctan(33​​)+πn<x<2π​+πn
Simplify arctan(33​​):6π​
arctan(33​​)
Use the following trivial identity:arctan(33​​)=6π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=6π​
6π​+πn<x<2π​+πn
tan(x)<1:−2π​+πn<x<4π​+πn
tan(x)<1
If tan(x)<athen −2π​+πn<x<arctan(a)+πn−2π​+πn<x<arctan(1)+πn
Simplify arctan(1):4π​
arctan(1)
Use the following trivial identity:arctan(1)=4π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=4π​
−2π​+πn<x<4π​+πn
Combine the intervals6π​+πn<x<2π​+πnand−2π​+πn<x<4π​+πn
Merge Overlapping Intervals6π​+πn<x<4π​+πn
Combine the intervals43π​+πn<x<65π​+πnor6π​+πn<x<4π​+πn
Merge Overlapping Intervals6π​+πn<x<4π​+πnor43π​+πn<x<65π​+πn

Popular Examples

6cos(2x-60)<= 06cos(2x−60)≤0tan(θ)>1tan(θ)>12sin(x/2)>12sin(2x​)>18-9sin(x)cos(x)>208−9sin(x)cos(x)>20cos^2(x)-2cos(x)+1<= 0cos2(x)−2cos(x)+1≤0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024