Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

7.5cos(pi/6 (x+3))+10.5>13.75

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

7.5cos(6π​(x+3))+10.5>13.75

Solution

π−6arccos(3013​)−3π​+12n<x<π6arccos(3013​)−3π​+12n
+2
Interval Notation
(π−6arccos(3013​)−3π​+12n,π6arccos(3013​)−3π​+12n)
Decimal
−5.14402…+12n<x<−0.85597…+12n
Solution steps
7.5cos(6π​(x+3))+10.5>13.75
Multiply both sides by 100
7.5cos(6π​(x+3))+10.5>13.75
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1007.5cos(6π​(x+3))⋅100+10.5⋅100>13.75⋅100
Refine750cos(6π​(x+3))+1050>1375
750cos(6π​(x+3))+1050>1375
Move 1050to the right side
750cos(6π​(x+3))+1050>1375
Subtract 1050 from both sides750cos(6π​(x+3))+1050−1050>1375−1050
Simplify750cos(6π​(x+3))>325
750cos(6π​(x+3))>325
Divide both sides by 750
750cos(6π​(x+3))>325
Divide both sides by 750750750cos(6π​(x+3))​>750325​
Simplifycos(6π​(x+3))>3013​
cos(6π​(x+3))>3013​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(3013​)+2πn<6π​(x+3)<arccos(3013​)+2πn
If a<u<bthen a<uandu<b−arccos(3013​)+2πn<6π​(x+3)and6π​(x+3)<arccos(3013​)+2πn
−arccos(3013​)+2πn<6π​(x+3):x>π−6arccos(3013​)−3π​+12n
−arccos(3013​)+2πn<6π​(x+3)
Switch sides6π​(x+3)>−arccos(3013​)+2πn
Multiply both sides by 6
6π​(x+3)>−arccos(3013​)+2πn
Multiply both sides by 66⋅6π​(x+3)>−6arccos(3013​)+6⋅2πn
Simplify
6⋅6π​(x+3)>−6arccos(3013​)+6⋅2πn
Simplify 6⋅6π​(x+3):π(x+3)
6⋅6π​(x+3)
Multiply fractions: a⋅cb​=ca⋅b​=66π​(x+3)
Cancel the common factor: 6=(x+3)π
Simplify −6arccos(3013​)+6⋅2πn:−6arccos(3013​)+12πn
−6arccos(3013​)+6⋅2πn
Multiply the numbers: 6⋅2=12=−6arccos(3013​)+12πn
π(x+3)>−6arccos(3013​)+12πn
π(x+3)>−6arccos(3013​)+12πn
π(x+3)>−6arccos(3013​)+12πn
Divide both sides by π
π(x+3)>−6arccos(3013​)+12πn
Divide both sides by πππ(x+3)​>−π6arccos(3013​)​+π12πn​
Simplifyx+3>−π6arccos(3013​)​+12n
x+3>−π6arccos(3013​)​+12n
Move 3to the right side
x+3>−π6arccos(3013​)​+12n
Subtract 3 from both sidesx+3−3>−π6arccos(3013​)​+12n−3
Simplifyx>−π6arccos(3013​)​+12n−3
x>−π6arccos(3013​)​+12n−3
Simplify −π6arccos(3013​)​−3:π−6arccos(3013​)−3π​
−π6arccos(3013​)​−3
Convert element to fraction: 3=π3π​=−π6arccos(3013​)​−π3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π−6arccos(3013​)−3π​
x>π−6arccos(3013​)−3π​+12n
6π​(x+3)<arccos(3013​)+2πn:x<π6arccos(3013​)−3π​+12n
6π​(x+3)<arccos(3013​)+2πn
Multiply both sides by 6
6π​(x+3)<arccos(3013​)+2πn
Multiply both sides by 66⋅6π​(x+3)<6arccos(3013​)+6⋅2πn
Simplify
6⋅6π​(x+3)<6arccos(3013​)+6⋅2πn
Simplify 6⋅6π​(x+3):π(x+3)
6⋅6π​(x+3)
Multiply fractions: a⋅cb​=ca⋅b​=66π​(x+3)
Cancel the common factor: 6=(x+3)π
Simplify 6arccos(3013​)+6⋅2πn:6arccos(3013​)+12πn
6arccos(3013​)+6⋅2πn
Multiply the numbers: 6⋅2=12=6arccos(3013​)+12πn
π(x+3)<6arccos(3013​)+12πn
π(x+3)<6arccos(3013​)+12πn
π(x+3)<6arccos(3013​)+12πn
Divide both sides by π
π(x+3)<6arccos(3013​)+12πn
Divide both sides by πππ(x+3)​<π6arccos(3013​)​+π12πn​
Simplifyx+3<π6arccos(3013​)​+12n
x+3<π6arccos(3013​)​+12n
Move 3to the right side
x+3<π6arccos(3013​)​+12n
Subtract 3 from both sidesx+3−3<π6arccos(3013​)​+12n−3
Simplifyx<π6arccos(3013​)​+12n−3
x<π6arccos(3013​)​+12n−3
Simplify π6arccos(3013​)​−3:π6arccos(3013​)−3π​
π6arccos(3013​)​−3
Convert element to fraction: 3=π3π​=π6arccos(3013​)​−π3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π6arccos(3013​)−3π​
x<π6arccos(3013​)−3π​+12n
Combine the intervalsx>π−6arccos(3013​)−3π​+12nandx<π6arccos(3013​)−3π​+12n
Merge Overlapping Intervalsπ−6arccos(3013​)−3π​+12n<x<π6arccos(3013​)−3π​+12n

Popular Examples

sin(x^2)<0sin(x2)<0sin(x/3)>= sqrt(3/2)sin(3x​)≥23​​cos(x)>-(sqrt(2))/2cos(x)>−22​​sqrt(3)tan^2(x)+3tan(x)>03​tan2(x)+3tan(x)>0-0.25<= 0.5sin(2x)−0.25≤0.5sin(2x)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024