Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin^2(x)+cos(x)>= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin2(x)+cos(x)≥1

Solution

−2π​+2πn≤x≤2π​+2πn
+2
Interval Notation
[−2π​+2πn,2π​+2πn]
Decimal
−1.57079…+2πn≤x≤1.57079…+2πn
Solution steps
sin2(x)+cos(x)≥1
Use the following identity: cos2(x)+sin2(x)=1Therefore sin2(x)=1−cos2(x)1−cos2(x)+cos(x)≥1
Let: u=cos(x)1−u2+u≥1
1−u2+u≥1:0≤u≤1
1−u2+u≥1
Rewrite in standard form
1−u2+u≥1
Subtract 1 from both sides1−u2+u−1≥1−1
Simplify−u2+u≥0
−u2+u≥0
Factor −u2+u:−u(u−1)
−u2+u
Apply exponent rule: ab+c=abacu2=uu=−uu+u
Factor out common term −u=−u(u−1)
−u(u−1)≥0
Multiply both sides by −1 (reverse the inequality)(−u(u−1))(−1)≤0⋅(−1)
Simplifyu(u−1)≤0
Identify the intervals
Find the signs of the factors of u(u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Summarize in a table:uu−1u(u−1)​u<0−−+​u=00−0​0<u<1+−−​u=1+00​u>1+++​​
Identify the intervals that satisfy the required condition: ≤0u=0or0<u<1oru=1
Merge Overlapping Intervals
0≤u<1oru=1
The union of two intervals is the set of numbers which are in either interval
u=0or0<u<1
0≤u<1
The union of two intervals is the set of numbers which are in either interval
0≤u<1oru=1
0≤u≤1
0≤u≤1
0≤u≤1
0≤u≤1
Substitute back u=cos(x)0≤cos(x)≤1
If a≤u≤bthen a≤uandu≤b0≤cos(x)andcos(x)≤1
0≤cos(x):−2π​+2πn≤x≤2π​+2πn
0≤cos(x)
Switch sidescos(x)≥0
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(0)+2πn≤x≤arccos(0)+2πn
Simplify −arccos(0):−2π​
−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−2π​
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
−2π​+2πn≤x≤2π​+2πn
cos(x)≤1:True for all x∈R
cos(x)≤1
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)≤1and−1≤cos(x)≤1:−1≤cos(x)≤1
Let y=cos(x)
Combine the intervalsy≤1and−1≤y≤1
Merge Overlapping Intervals
y≤1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≤1and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervals−2π​+2πn≤x≤2π​+2πnandTrueforallx∈R
Merge Overlapping Intervals−2π​+2πn≤x≤2π​+2πn

Popular Examples

cos(x)>= (sqrt(3))/2cos(x)≥23​​cos(x)-1>= 0cos(x)−1≥02sin(x/2)-1>02sin(2x​)−1>0sin(3x)<(sqrt(2))/2sin(3x)<22​​sin(2x-pi/(12))<= (sqrt(2))/2sin(2x−12π​)≤22​​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024