Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(3x)<(sqrt(2))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3x)<22​​

Solution

−125π​+32π​n<x<12π​+32π​n
+2
Interval Notation
(−125π​+32π​n,12π​+32π​n)
Decimal
−1.30899…+32π​n<x<0.26179…+32π​n
Solution steps
sin(3x)<22​​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(22​​)+2πn<3x<arcsin(22​​)+2πn
If a<u<bthen a<uandu<b−π−arcsin(22​​)+2πn<3xand3x<arcsin(22​​)+2πn
−π−arcsin(22​​)+2πn<3x:x>−125π​+32π​n
−π−arcsin(22​​)+2πn<3x
Switch sides3x>−π−arcsin(22​​)+2πn
Simplify −π−arcsin(22​​)+2πn:−π−4π​+2πn
−π−arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−4π​+2πn
3x>−π−4π​+2πn
Divide both sides by 3
3x>−π−4π​+2πn
Divide both sides by 333x​>−3π​−34π​​+32πn​
Simplify
33x​>−3π​−34π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify −3π​−34π​​+32πn​:−3π​−12π​+32πn​
−3π​−34π​​+32πn​
34π​​=12π​
34π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅3π​
Multiply the numbers: 4⋅3=12=12π​
=−3π​−12π​+32πn​
x>−3π​−12π​+32πn​
x>−3π​−12π​+32πn​
Simplify −3π​−12π​:−125π​
−3π​−12π​
Least Common Multiplier of 3,12:12
3,12
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 12=3⋅2⋅2
Multiply the numbers: 3⋅2⋅2=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
=−12π4​−12π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π4−π​
Add similar elements: −4π−π=−5π=12−5π​
Apply the fraction rule: b−a​=−ba​=−125π​
x>−125π​+32π​n
x>−125π​+32π​n
3x<arcsin(22​​)+2πn:x<12π​+32πn​
3x<arcsin(22​​)+2πn
Simplify arcsin(22​​)+2πn:4π​+2πn
arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=4π​+2πn
3x<4π​+2πn
Divide both sides by 3
3x<4π​+2πn
Divide both sides by 333x​<34π​​+32πn​
Simplify
33x​<34π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 34π​​+32πn​:12π​+32πn​
34π​​+32πn​
34π​​=12π​
34π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅3π​
Multiply the numbers: 4⋅3=12=12π​
=12π​+32πn​
x<12π​+32πn​
x<12π​+32πn​
x<12π​+32πn​
Combine the intervalsx>−125π​+32π​nandx<12π​+32πn​
Merge Overlapping Intervals−125π​+32π​n<x<12π​+32π​n

Popular Examples

sin(2x-pi/(12))<= (sqrt(2))/2sin(2x−12π​)≤22​​| pi/3 |<tan(t),-csc(2t)​3π​​<tan(t),−csc(2t)tan(x)<2tan(x)<2cos(2x+pi/6)<=-1/2cos(2x+6π​)≤−21​cos(x/7)<= 1/2cos(7x​)≤21​
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024