Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan(x)+1)(tan(x)+2)+2tan(x)+2>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(tan(x)+1)(tan(x)+2)+2tan(x)+2≥0

Solution

−4π​+πn≤x<2π​+πnor−2π​+πn<x≤−arctan(4)+πn
+2
Interval Notation
[−4π​+πn,2π​+πn)∪(−2π​+πn,−arctan(4)+πn]
Decimal
−0.78539…+πn≤x<1.57079…+πnor−1.57079…+πn<x≤−1.32581…+πn
Solution steps
(tan(x)+1)(tan(x)+2)+2tan(x)+2≥0
Let: u=tan(x)(u+1)(u+2)+2u+2≥0
(u+1)(u+2)+2u+2≥0:u≤−4oru≥−1
(u+1)(u+2)+2u+2≥0
Factor (u+1)(u+2)+2u+2:(u+1)(u+4)
(u+1)(u+2)+2u+2
Factor 2u+2:2(u+1)
2u+2
Factor out common term 2=2(u+1)
=(u+1)(u+2)+2(u+1)
Factor out common term (u+1)=(u+1)(u+2+2)
Simplify u+2+2:u+4
u+2+2
Add the numbers: 2+2=4=u+4
=(u+1)(u+4)
(u+1)(u+4)≥0
Identify the intervals
Find the signs of the factors of (u+1)(u+4)
Find the signs of u+1
u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
u+1<0:u<−1
u+1<0
Move 1to the right side
u+1<0
Subtract 1 from both sidesu+1−1<0−1
Simplifyu<−1
u<−1
u+1>0:u>−1
u+1>0
Move 1to the right side
u+1>0
Subtract 1 from both sidesu+1−1>0−1
Simplifyu>−1
u>−1
Find the signs of u+4
u+4=0:u=−4
u+4=0
Move 4to the right side
u+4=0
Subtract 4 from both sidesu+4−4=0−4
Simplifyu=−4
u=−4
u+4<0:u<−4
u+4<0
Move 4to the right side
u+4<0
Subtract 4 from both sidesu+4−4<0−4
Simplifyu<−4
u<−4
u+4>0:u>−4
u+4>0
Move 4to the right side
u+4>0
Subtract 4 from both sidesu+4−4>0−4
Simplifyu>−4
u>−4
Summarize in a table:u+1u+4(u+1)(u+4)​u<−4−−+​u=−4−00​−4<u<−1−+−​u=−10+0​u>−1+++​​
Identify the intervals that satisfy the required condition: ≥0u<−4oru=−4oru=−1oru>−1
Merge Overlapping Intervals
u≤−4oru=−1oru>−1
The union of two intervals is the set of numbers which are in either interval
u<−4oru=−4
u≤−4
The union of two intervals is the set of numbers which are in either interval
u≤−4oru=−1
u≤−4oru=−1
The union of two intervals is the set of numbers which are in either interval
u≤−4oru=−1oru>−1
u≤−4oru≥−1
u≤−4oru≥−1
u≤−4oru≥−1
u≤−4oru≥−1
Substitute back u=tan(x)tan(x)≤−4ortan(x)≥−1
tan(x)≤−4:−2π​+πn<x≤−arctan(4)+πn
tan(x)≤−4
If tan(x)≤athen −2π​+πn<x≤arctan(a)+πn−2π​+πn<x≤arctan(−4)+πn
Simplify arctan(−4):−arctan(4)
arctan(−4)
Use the following property: arctan(−x)=−arctan(x)arctan(−4)=−arctan(4)=−arctan(4)
−2π​+πn<x≤−arctan(4)+πn
tan(x)≥−1:−4π​+πn≤x<2π​+πn
tan(x)≥−1
If tan(x)≥athen arctan(a)+πn≤x<2π​+πnarctan(−1)+πn≤x<2π​+πn
Simplify arctan(−1):−4π​
arctan(−1)
Use the following property: arctan(−x)=−arctan(x)arctan(−1)=−arctan(1)=−arctan(1)
Use the following trivial identity:arctan(1)=4π​
arctan(1)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=4π​
=−4π​
−4π​+πn≤x<2π​+πn
Combine the intervals−2π​+πn<x≤−arctan(4)+πnor−4π​+πn≤x<2π​+πn
Merge Overlapping Intervals−4π​+πn≤x<2π​+πnor−2π​+πn<x≤−arctan(4)+πn

Popular Examples

sin(x+pi/4)<= 1/2sin(x+4π​)≤21​cos(x)>(sqrt(2))/2cos(x)>22​​cos(x)<(sqrt(2))/2cos(x)<22​​cot(x)<1cot(x)<12sin(x)-1>= 02sin(x)−1≥0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024