Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+pi/4)<= 1/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+4π​)≤21​

Solution

−1217π​+2πn≤x≤−12π​+2πn
+2
Interval Notation
[−1217π​+2πn,−12π​+2πn]
Decimal
−4.45058…+2πn≤x≤−0.26179…+2πn
Solution steps
sin(x+4π​)≤21​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(21​)+2πn≤(x+4π​)≤arcsin(21​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(21​)+2πn≤x+4π​andx+4π​≤arcsin(21​)+2πn
−π−arcsin(21​)+2πn≤x+4π​:x≥−1217π​+2πn
−π−arcsin(21​)+2πn≤x+4π​
Switch sidesx+4π​≥−π−arcsin(21​)+2πn
Simplify −π−arcsin(21​)+2πn:−π−6π​+2πn
−π−arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−6π​+2πn
x+4π​≥−π−6π​+2πn
Move 4π​to the right side
x+4π​≥−π−6π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​≥−π−6π​+2πn−4π​
Simplify
x+4π​−4π​≥−π−6π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​≥0
=x
Simplify −π−6π​+2πn−4π​:−π+2πn−125π​
−π−6π​+2πn−4π​
Group like terms=−π+2πn−6π​−4π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
=−12π2​−12π3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π2−π3​
Add similar elements: −2π−3π=−5π=12−5π​
Apply the fraction rule: b−a​=−ba​=−π+2πn−125π​
x≥−π+2πn−125π​
x≥−π+2πn−125π​
x≥−π+2πn−125π​
Simplify −π−125π​:−1217π​
−π−125π​
Convert element to fraction: π=12π12​=−12π12​−125π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π12−5π​
Add similar elements: −12π−5π=−17π=12−17π​
Apply the fraction rule: b−a​=−ba​=−1217π​
x≥−1217π​+2πn
x+4π​≤arcsin(21​)+2πn:x≤2πn−12π​
x+4π​≤arcsin(21​)+2πn
Simplify arcsin(21​)+2πn:6π​+2πn
arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​+2πn
x+4π​≤6π​+2πn
Move 4π​to the right side
x+4π​≤6π​+2πn
Subtract 4π​ from both sidesx+4π​−4π​≤6π​+2πn−4π​
Simplify
x+4π​−4π​≤6π​+2πn−4π​
Simplify x+4π​−4π​:x
x+4π​−4π​
Add similar elements: 4π​−4π​≤0
=x
Simplify 6π​+2πn−4π​:2πn−12π​
6π​+2πn−4π​
Group like terms=2πn+6π​−4π​
Least Common Multiplier of 6,4:12
6,4
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 6 or 4=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
=12π2​−12π3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π2−π3​
Add similar elements: 2π−3π=−π=12−π​
Apply the fraction rule: b−a​=−ba​=2πn−12π​
x≤2πn−12π​
x≤2πn−12π​
x≤2πn−12π​
Combine the intervalsx≥−1217π​+2πnandx≤2πn−12π​
Merge Overlapping Intervals−1217π​+2πn≤x≤−12π​+2πn

Popular Examples

cos(x)>(sqrt(2))/2cos(x)>22​​cos(x)<(sqrt(2))/2cos(x)<22​​cot(x)<1cot(x)<12sin(x)-1>= 02sin(x)−1≥0sin^2(x)+1/2*sin(x)>0sin2(x)+21​⋅sin(x)>0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024