Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cos^2(x)+5cos(x)-2<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos2(x)+5cos(x)−2<0

Solution

arccos(31​)+2πn<x<2π−arccos(31​)+2πn
+2
Interval Notation
(arccos(31​)+2πn,2π−arccos(31​)+2πn)
Decimal
1.23095…+2πn<x<5.05222…+2πn
Solution steps
3cos2(x)+5cos(x)−2<0
Let: u=cos(x)3u2+5u−2<0
3u2+5u−2<0:−2<u<31​
3u2+5u−2<0
Factor 3u2+5u−2:(3u−1)(u+2)
3u2+5u−2
Break the expression into groups
3u2+5u−2
Definition
Factors of 6:1,2,3,6
6
Divisors (Factors)
Find the Prime factors of 6:2,3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Add the prime factors: 2,3
Add 1 and the number 6 itself1,6
The factors of 61,2,3,6
Negative factors of 6:−1,−2,−3,−6
Multiply the factors by −1 to get the negative factors−1,−2,−3,−6
For every two factors such that u∗v=−6,check if u+v=5
Check u=1,v=−6:u∗v=−6,u+v=−5⇒FalseCheck u=2,v=−3:u∗v=−6,u+v=−1⇒False
u=6,v=−1
Group into (ax2+ux)+(vx+c)(3u2−u)+(6u−2)
=(3u2−u)+(6u−2)
Factor out ufrom 3u2−u:u(3u−1)
3u2−u
Apply exponent rule: ab+c=abacu2=uu=3uu−u
Factor out common term u=u(3u−1)
Factor out 2from 6u−2:2(3u−1)
6u−2
Rewrite 6 as 2⋅3=2⋅3u−2
Factor out common term 2=2(3u−1)
=u(3u−1)+2(3u−1)
Factor out common term 3u−1=(3u−1)(u+2)
(3u−1)(u+2)<0
Identify the intervals
Find the signs of the factors of (3u−1)(u+2)
Find the signs of 3u−1
3u−1=0:u=31​
3u−1=0
Move 1to the right side
3u−1=0
Add 1 to both sides3u−1+1=0+1
Simplify3u=1
3u=1
Divide both sides by 3
3u=1
Divide both sides by 333u​=31​
Simplifyu=31​
u=31​
3u−1<0:u<31​
3u−1<0
Move 1to the right side
3u−1<0
Add 1 to both sides3u−1+1<0+1
Simplify3u<1
3u<1
Divide both sides by 3
3u<1
Divide both sides by 333u​<31​
Simplifyu<31​
u<31​
3u−1>0:u>31​
3u−1>0
Move 1to the right side
3u−1>0
Add 1 to both sides3u−1+1>0+1
Simplify3u>1
3u>1
Divide both sides by 3
3u>1
Divide both sides by 333u​>31​
Simplifyu>31​
u>31​
Find the signs of u+2
u+2=0:u=−2
u+2=0
Move 2to the right side
u+2=0
Subtract 2 from both sidesu+2−2=0−2
Simplifyu=−2
u=−2
u+2<0:u<−2
u+2<0
Move 2to the right side
u+2<0
Subtract 2 from both sidesu+2−2<0−2
Simplifyu<−2
u<−2
u+2>0:u>−2
u+2>0
Move 2to the right side
u+2>0
Subtract 2 from both sidesu+2−2>0−2
Simplifyu>−2
u>−2
Summarize in a table:3u−1u+2(3u−1)(u+2)​u<−2−−+​u=−2−00​−2<u<31​−+−​u=31​0+0​u>31​+++​​
Identify the intervals that satisfy the required condition: <0−2<u<31​
−2<u<31​
−2<u<31​
Substitute back u=cos(x)−2<cos(x)<31​
If a<u<bthen a<uandu<b−2<cos(x)andcos(x)<31​
−2<cos(x):True for all x∈R
−2<cos(x)
Switch sidescos(x)>−2
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)>−2and−1≤cos(x)≤1:−1≤cos(x)≤1
Let y=cos(x)
Combine the intervalsy>−2and−1≤y≤1
Merge Overlapping Intervals
y>−2and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>−2and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
cos(x)<31​:arccos(31​)+2πn<x<2π−arccos(31​)+2πn
cos(x)<31​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(31​)+2πn<x<2π−arccos(31​)+2πn
Combine the intervalsTrueforallx∈Randarccos(31​)+2πn<x<2π−arccos(31​)+2πn
Merge Overlapping Intervalsarccos(31​)+2πn<x<2π−arccos(31​)+2πn

Popular Examples

cos(x)<= 1/2cos(x)≤21​1+cos(2t)>= 01+cos(2t)≥015cos(pi/(15)x-(2pi)/3)+95<= 10515cos(15π​x−32π​)+95≤105sin(θ)>0,sec(θ)<0sin(θ)>0,sec(θ)<0arctan(x)>0arctan(x)>0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024