Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

15cos(pi/(15)x-(2pi)/3)+95<= 105

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

15cos(15π​x−32π​)+95≤105

Solution

π10π+15arccos(32​)​+30n≤x≤π40π−15arccos(32​)​+30n
+2
Interval Notation
[π10π+15arccos(32​)​+30n,π40π−15arccos(32​)​+30n]
Decimal
14.01580…+30n≤x≤35.98419…+30n
Solution steps
15cos(15π​x−32π​)+95≤105
Move 95to the right side
15cos(15π​x−32π​)+95≤105
Subtract 95 from both sides15cos(15π​x−32π​)+95−95≤105−95
Simplify15cos(15π​x−32π​)≤10
15cos(15π​x−32π​)≤10
Divide both sides by 15
15cos(15π​x−32π​)≤10
Divide both sides by 151515cos(15π​x−32π​)​≤1510​
Simplifycos(15π​x−32π​)≤32​
cos(15π​x−32π​)≤32​
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(32​)+2πn≤(15π​x−32π​)≤2π−arccos(32​)+2πn
If a≤u≤bthen a≤uandu≤barccos(32​)+2πn≤15π​x−32π​and15π​x−32π​≤2π−arccos(32​)+2πn
arccos(32​)+2πn≤15π​x−32π​:x≥π10π+15arccos(32​)​+30n
arccos(32​)+2πn≤15π​x−32π​
Switch sides15π​x−32π​≥arccos(32​)+2πn
Move 32π​to the right side
15π​x−32π​≥arccos(32​)+2πn
Add 32π​ to both sides15π​x−32π​+32π​≥arccos(32​)+2πn+32π​
Simplify15π​x≥arccos(32​)+2πn+32π​
15π​x≥arccos(32​)+2πn+32π​
Multiply both sides by 15
15π​x≥arccos(32​)+2πn+32π​
Multiply both sides by 1515⋅15π​x≥15arccos(32​)+15⋅2πn+15⋅32π​
Simplify
15⋅15π​x≥15arccos(32​)+15⋅2πn+15⋅32π​
Simplify 15⋅15π​x:πx
15⋅15π​x
Multiply fractions: a⋅cb​=ca⋅b​=1515π​x
Cancel the common factor: 15=xπ
Simplify 15arccos(32​)+15⋅2πn+15⋅32π​:15arccos(32​)+30πn+10π
15arccos(32​)+15⋅2πn+15⋅32π​
15⋅2πn=30πn
15⋅2πn
Multiply the numbers: 15⋅2=30=30πn
15⋅32π​=10π
15⋅32π​
Multiply fractions: a⋅cb​=ca⋅b​=32π15​
Multiply the numbers: 2⋅15=30=330π​
Divide the numbers: 330​=10=10π
=15arccos(32​)+30πn+10π
πx≥15arccos(32​)+30πn+10π
πx≥15arccos(32​)+30πn+10π
πx≥15arccos(32​)+30πn+10π
Divide both sides by π
πx≥15arccos(32​)+30πn+10π
Divide both sides by πππx​≥π15arccos(32​)​+π30πn​+π10π​
Simplify
ππx​≥π15arccos(32​)​+π30πn​+π10π​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π15arccos(32​)​+π30πn​+π10π​:10+30n+π15arccos(32​)​
π15arccos(32​)​+π30πn​+π10π​
Group like terms=π10π​+π30πn​+π15arccos(32​)​
Cancel π10π​:10
π10π​
Cancel the common factor: π=10
=10+π30πn​+π15arccos(32​)​
Cancel π30πn​:30n
π30πn​
Cancel the common factor: π=30n
=10+30n+π15arccos(32​)​
x≥10+30n+π15arccos(32​)​
x≥10+30n+π15arccos(32​)​
Simplify 10+π15arccos(32​)​:π10π+15arccos(32​)​
10+π15arccos(32​)​
Convert element to fraction: 10=π10π​=π10π​+π15arccos(32​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π10π+15arccos(32​)​
x≥π10π+15arccos(32​)​+30n
x≥π10π+15arccos(32​)​+30n
15π​x−32π​≤2π−arccos(32​)+2πn:x≤π40π−15arccos(32​)​+30n
15π​x−32π​≤2π−arccos(32​)+2πn
Move 32π​to the right side
15π​x−32π​≤2π−arccos(32​)+2πn
Add 32π​ to both sides15π​x−32π​+32π​≤2π−arccos(32​)+2πn+32π​
Simplify15π​x≤2π−arccos(32​)+2πn+32π​
15π​x≤2π−arccos(32​)+2πn+32π​
Multiply both sides by 15
15π​x≤2π−arccos(32​)+2πn+32π​
Multiply both sides by 1515⋅15π​x≤15⋅2π−15arccos(32​)+15⋅2πn+15⋅32π​
Simplify
15⋅15π​x≤15⋅2π−15arccos(32​)+15⋅2πn+15⋅32π​
Simplify 15⋅15π​x:πx
15⋅15π​x
Multiply fractions: a⋅cb​=ca⋅b​=1515π​x
Cancel the common factor: 15=xπ
Simplify 15⋅2π−15arccos(32​)+15⋅2πn+15⋅32π​:40π+30πn−15arccos(32​)
15⋅2π−15arccos(32​)+15⋅2πn+15⋅32π​
15⋅2π=30π
15⋅2π
Multiply the numbers: 15⋅2=30=30π
15⋅2πn=30πn
15⋅2πn
Multiply the numbers: 15⋅2=30=30πn
15⋅32π​=10π
15⋅32π​
Multiply fractions: a⋅cb​=ca⋅b​=32π15​
Multiply the numbers: 2⋅15=30=330π​
Divide the numbers: 330​=10=10π
=30π−15arccos(32​)+30πn+10π
Group like terms=30π+10π+30πn−15arccos(32​)
Add similar elements: 30π+10π=40π=40π+30πn−15arccos(32​)
πx≤40π+30πn−15arccos(32​)
πx≤40π+30πn−15arccos(32​)
πx≤40π+30πn−15arccos(32​)
Divide both sides by π
πx≤40π+30πn−15arccos(32​)
Divide both sides by πππx​≤π40π​+π30πn​−π15arccos(32​)​
Simplify
ππx​≤π40π​+π30πn​−π15arccos(32​)​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π40π​+π30πn​−π15arccos(32​)​:40+30n−π15arccos(32​)​
π40π​+π30πn​−π15arccos(32​)​
Cancel π40π​:40
π40π​
Cancel the common factor: π=40
=40+π30πn​−π15arccos(32​)​
Cancel π30πn​:30n
π30πn​
Cancel the common factor: π=30n
=40+30n−π15arccos(32​)​
x≤40+30n−π15arccos(32​)​
x≤40+30n−π15arccos(32​)​
Simplify 40−π15arccos(32​)​:π40π−15arccos(32​)​
40−π15arccos(32​)​
Convert element to fraction: 40=π40π​=π40π​−π15arccos(32​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π40π−15arccos(32​)​
x≤π40π−15arccos(32​)​+30n
x≤π40π−15arccos(32​)​+30n
Combine the intervalsx≥π10π+15arccos(32​)​+30nandx≤π40π−15arccos(32​)​+30n
Merge Overlapping Intervalsπ10π+15arccos(32​)​+30n≤x≤π40π−15arccos(32​)​+30n

Popular Examples

sin(θ)>0,sec(θ)<0sin(θ)>0,sec(θ)<0arctan(x)>0arctan(x)>0tan(θ)<0tan(θ)<0sin(x)>-(sqrt(3))/2sin(x)>−23​​sin(θ)<= 0sin(θ)≤0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024