Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove 1/(tan(2θ))=(cot^2(θ)-1)/(2cot(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove tan(2θ)1​=2cot(θ)cot2(θ)−1​

Solution

True
Solution steps
tan(2θ)1​=2cot(θ)cot2(θ)−1​
Manipulating left sidetan(2θ)1​
Express with sin, cos
tan(2θ)1​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(2θ)sin(2θ)​1​
Simplify cos(2θ)sin(2θ)​1​:sin(2θ)cos(2θ)​
cos(2θ)sin(2θ)​1​
Apply the fraction rule: cb​1​=bc​=sin(2θ)cos(2θ)​
=sin(2θ)cos(2θ)​
=sin(2θ)cos(2θ)​
Manipulating right side2cot(θ)cot2(θ)−1​
Express with sin, cos
2cot(θ)−1+cot2(θ)​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=2⋅sin(θ)cos(θ)​−1+(sin(θ)cos(θ)​)2​
Simplify 2⋅sin(θ)cos(θ)​−1+(sin(θ)cos(θ)​)2​:2sin(θ)cos(θ)−sin2(θ)+cos2(θ)​
2⋅sin(θ)cos(θ)​−1+(sin(θ)cos(θ)​)2​
Multiply 2⋅sin(θ)cos(θ)​:sin(θ)2cos(θ)​
2⋅sin(θ)cos(θ)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(θ)cos(θ)⋅2​
=sin(θ)2cos(θ)​−1+(sin(θ)cos(θ)​)2​
Apply exponent rule: (ba​)c=bcac​=sin(θ)2cos(θ)​−1+sin2(θ)cos2(θ)​​
Apply the fraction rule: cb​a​=ba⋅c​=cos(θ)⋅2(−1+sin2(θ)cos2(θ)​)sin(θ)​
Join −1+sin2(θ)cos2(θ)​:sin2(θ)−sin2(θ)+cos2(θ)​
−1+sin2(θ)cos2(θ)​
Convert element to fraction: 1=sin2(θ)1sin2(θ)​=−sin2(θ)1⋅sin2(θ)​+sin2(θ)cos2(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(θ)−1⋅sin2(θ)+cos2(θ)​
Multiply: 1⋅sin2(θ)=sin2(θ)=sin2(θ)−sin2(θ)+cos2(θ)​
=2cos(θ)sin2(θ)cos2(θ)−sin2(θ)​sin(θ)​
Multiply sin2(θ)−sin2(θ)+cos2(θ)​sin(θ):sin(θ)−sin2(θ)+cos2(θ)​
sin2(θ)−sin2(θ)+cos2(θ)​sin(θ)
Multiply fractions: a⋅cb​=ca⋅b​=sin2(θ)(−sin2(θ)+cos2(θ))sin(θ)​
Cancel the common factor: sin(θ)=sin(θ)−sin2(θ)+cos2(θ)​
=2cos(θ)sin(θ)−sin2(θ)+cos2(θ)​​
Apply the fraction rule: acb​​=c⋅ab​=sin(θ)cos(θ)⋅2−sin2(θ)+cos2(θ)​
=2sin(θ)cos(θ)−sin2(θ)+cos2(θ)​
=2cos(θ)sin(θ)cos2(θ)−sin2(θ)​
Rewrite using trig identities
2cos(θ)sin(θ)cos2(θ)−sin2(θ)​
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)=sin(2θ)cos2(θ)−sin2(θ)​
Use the Double Angle identity: cos2(x)−sin2(x)=cos(2x)=sin(2θ)cos(2θ)​
=sin(2θ)cos(2θ)​
We showed that the two sides could take the same form⇒True

Popular Examples

prove (1-cos(θ))+sin^2(θ)=2prove(1−cos(θ))+sin2(θ)=2prove 1/(sec(θ))=(sec(θ))^{-1}provesec(θ)1​=(sec(θ))−1prove sin(2θ)+cos(2θ)=1provesin(2θ)+cos(2θ)=1prove 25(sec^2(5x)-tan^2(5x))=25prove25(sec2(5x)−tan2(5x))=25prove cot^2(x)=((cos^2(x)))/(1-cos^2(x))provecot2(x)=1−cos2(x)(cos2(x))​

Frequently Asked Questions (FAQ)

  • Is 1/(tan(2θ))=(cot^2(θ)-1)/(2cot(θ)) ?

    The answer to whether 1/(tan(2θ))=(cot^2(θ)-1)/(2cot(θ)) is True
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024