Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove cos^4(θ)= 1/4+(cos(2θ))/2+(cos^2(2θ))/4

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove cos4(θ)=41​+2cos(2θ)​+4cos2(2θ)​

Solution

True
Solution steps
cos4(θ)=41​+2cos(2θ)​+4cos2(2θ)​
Manipulating right side41​+2cos(2θ)​+4cos2(2θ)​
Rewrite using trig identities
41​+2cos(2θ)​+4cos2(2θ)​
Use the Double Angle identity: cos(2x)=2cos2(x)−1=41​+22cos2(θ)−1​+4(2cos2(θ)−1)2​
Simplify 41​+22cos2(θ)−1​+4(2cos2(θ)−1)2​:cos4(θ)
41​+22cos2(θ)−1​+4(2cos2(θ)−1)2​
Combine the fractions 41​+4(2cos2(θ)−1)2​:41+(2cos2(θ)−1)2​
Apply rule ca​±cb​=ca±b​=41+(2cos2(θ)−1)2​
=4(2cos2(θ)−1)2+1​+22cos2(θ)−1​
41+(2cos2(θ)−1)2​=22cos4(θ)−2cos2(θ)+1​
41+(2cos2(θ)−1)2​
Expand 1+(2cos2(θ)−1)2:4cos4(θ)−4cos2(θ)+2
1+(2cos2(θ)−1)2
(2cos2(θ)−1)2:4cos4(θ)−4cos2(θ)+1
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=2cos2(θ),b=1
=(2cos2(θ))2−2⋅2cos2(θ)⋅1+12
Simplify (2cos2(θ))2−2⋅2cos2(θ)⋅1+12:4cos4(θ)−4cos2(θ)+1
(2cos2(θ))2−2⋅2cos2(θ)⋅1+12
Apply rule 1a=112=1=(2cos2(θ))2−2⋅2⋅1⋅cos2(θ)+1
(2cos2(θ))2=4cos4(θ)
(2cos2(θ))2
Apply exponent rule: (a⋅b)n=anbn=22(cos2(θ))2
(cos2(θ))2:cos4(θ)
Apply exponent rule: (ab)c=abc=cos2⋅2(θ)
Multiply the numbers: 2⋅2=4=cos4(θ)
=22cos4(θ)
22=4=4cos4(θ)
2⋅2cos2(θ)⋅1=4cos2(θ)
2⋅2cos2(θ)⋅1
Multiply the numbers: 2⋅2⋅1=4=4cos2(θ)
=4cos4(θ)−4cos2(θ)+1
=4cos4(θ)−4cos2(θ)+1
=1+4cos4(θ)−4cos2(θ)+1
Simplify 1+4cos4(θ)−4cos2(θ)+1:4cos4(θ)−4cos2(θ)+2
1+4cos4(θ)−4cos2(θ)+1
Group like terms=4cos4(θ)−4cos2(θ)+1+1
Add the numbers: 1+1=2=4cos4(θ)−4cos2(θ)+2
=4cos4(θ)−4cos2(θ)+2
=44cos4(θ)−4cos2(θ)+2​
Factor 4cos4(θ)−4cos2(θ)+2:2(2cos4(θ)−2cos2(θ)+1)
4cos4(θ)−4cos2(θ)+2
Rewrite as=2⋅2cos4(θ)−2⋅2cos2(θ)+2⋅1
Factor out common term 2=2(2cos4(θ)−2cos2(θ)+1)
=42(2cos4(θ)−2cos2(θ)+1)​
Cancel the common factor: 2=22cos4(θ)−2cos2(θ)+1​
=22cos4(θ)−2cos2(θ)+1​+22cos2(θ)−1​
Apply rule ca​±cb​=ca±b​=22cos4(θ)−2cos2(θ)+1+2cos2(θ)−1​
2cos4(θ)−2cos2(θ)+1+2cos2(θ)−1=2cos4(θ)
2cos4(θ)−2cos2(θ)+1+2cos2(θ)−1
Group like terms=2cos4(θ)−2cos2(θ)+2cos2(θ)+1−1
Add similar elements: −2cos2(θ)+2cos2(θ)=0=2cos4(θ)+1−1
1−1=0=2cos4(θ)
=22cos4(θ)​
Divide the numbers: 22​=1=cos4(θ)
=cos4(θ)
=cos4(θ)
We showed that the two sides could take the same form⇒True

Popular Examples

prove sin(x)(tan^2(x)+1)=tan(x)sec(x)provesin(x)(tan2(x)+1)=tan(x)sec(x)prove csc(u)=2provecsc(u)=2prove csc(x)-cos^2(x)-csc(x)=sin(x)provecsc(x)−cos2(x)−csc(x)=sin(x)prove 1-(cos^2(x))/(1+sin^2(x))=sin(s)prove1−1+sin2(x)cos2(x)​=sin(s)prove csc(x)= 1/(sin(x))=2provecsc(x)=sin(x)1​=2

Frequently Asked Questions (FAQ)

  • Is cos^4(θ)= 1/4+(cos(2θ))/2+(cos^2(2θ))/4 ?

    The answer to whether cos^4(θ)= 1/4+(cos(2θ))/2+(cos^2(2θ))/4 is True
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024