Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3/(tan(36))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(36∘)3​

Solution

203(52​+310​)5−5​​​
+1
Decimal
4.12914…
Solution steps
tan(36∘)3​
Rewrite using trig identities:tan(36∘)=42​(5​−1)5−5​​​
tan(36∘)
Rewrite using trig identities:cos(36∘)sin(36∘)​
tan(36∘)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(36∘)sin(36∘)​
=cos(36∘)sin(36∘)​
Rewrite using trig identities:sin(36∘)=42​5−5​​​
sin(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
Square both sides(cos(36∘))2=(45​+1​)2
Use the following identity: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
Substitute cos(36∘)=45​+1​sin2(36∘)=1−(45​+1​)2
Refinesin2(36∘)=85−5​​
Take the square root of both sidessin(36∘)=±85−5​​​
sin(36∘)cannot be negativesin(36∘)=85−5​​​
Refinesin(36∘)=225−5​​​​
=225−5​​​​
Simplify=42​5−5​​​
Rewrite using trig identities:cos(36∘)=45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
=45​+1​42​5−5​​​​
Simplify 45​+1​42​5−5​​​​:42​(5​−1)5−5​​​
45​+1​42​5−5​​​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=4(5​+1)2​5−5​​⋅4​
Cancel the common factor: 4=5​+12​5−5​​​
Rationalize 5​+12​5−5​​​:42​(5​−1)5−5​​​
5​+12​5−5​​​
Multiply by the conjugate 5​−15​−1​=(5​+1)(5​−1)2​5−5​​(5​−1)​
(5​+1)(5​−1)=4
(5​+1)(5​−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=5​,b=1=(5​)2−12
Simplify (5​)2−12:4
(5​)2−12
Apply rule 1a=112=1=(5​)2−1
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=5−1
Subtract the numbers: 5−1=4=4
=4
=42​(5​−1)5−5​​​
=42​(5​−1)5−5​​​
=42​(5​−1)5−5​​​
=42​(5​−1)5−5​​​3​
Simplify 42​(5​−1)5−5​​​3​:203(52​+310​)5−5​​​
42​(5​−1)5−5​​​3​
Apply the fraction rule: cb​a​=ba⋅c​=2​(5​−1)5−5​​3⋅4​
Multiply the numbers: 3⋅4=12=2​(5​−1)5−5​​12​
Factor 12:22⋅3
Factor 12=22⋅3
=2​(5​−1)5−5​​22⋅3​
Cancel 2​(5​−1)5−5​​22⋅3​:(5​−1)5−5​​3⋅223​​
2​(5​−1)5−5​​22⋅3​
Apply radical rule: 2​=221​=221​(5​−1)5−5​​22⋅3​
Apply exponent rule: xbxa​=xa−b221​22​=22−21​=(5​−1)5−5​​3⋅2−21​+2​
Subtract the numbers: 2−21​=23​=(5​−1)5−5​​3⋅223​​
=(5​−1)5−5​​3⋅223​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=(5​−1)5−5​​3⋅22​​
Multiply the numbers: 3⋅2=6=(5​−1)5−5​​62​​
Rationalize (5​−1)5−5​​62​​:203(52​+310​)5−5​​​
(5​−1)5−5​​62​​
Multiply by the conjugate 5​+15​+1​=(5​−1)5−5​​(5​+1)62​(5​+1)​
(5​−1)5−5​​(5​+1)=45−5​​
(5​−1)5−5​​(5​+1)
=(5​−1)(5​+1)5−5​​
Expand (5​−1)(5​+1):4
(5​−1)(5​+1)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=5​,b=1=(5​)2−12
Simplify (5​)2−12:4
(5​)2−12
Apply rule 1a=112=1=(5​)2−1
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=5−1
Subtract the numbers: 5−1=4=4
=4
=5−5​​⋅4
Expand 5−5​​⋅4:45−5​​
5−5​​⋅4
Distribute parentheses=5−5​​⋅4
=45−5​​
=45−5​​
=45−5​​62​(5​+1)​
Cancel the common factor: 2=25−5​​32​(1+5​)​
Multiply by the conjugate 5−5​​5−5​​​=25−5​​5−5​​32​(1+5​)5−5​​​
25−5​​5−5​​=10−25​
25−5​​5−5​​
Apply radical rule: a​a​=a5−5​​5−5​​=5−5​=2(5−5​)
Apply the distributive law: a(b−c)=ab−aca=2,b=5,c=5​=2⋅5−25​
Multiply the numbers: 2⋅5=10=10−25​
=10−25​32​(1+5​)5−5​​​
Factor out common term −2:−2(5​−5)
−25​+10
Rewrite 10 as 2⋅5=−25​+2⋅5
Factor out common term −2=−2(5​−5)
=−2(5​−5)32​(1+5​)5−5​​​
Cancel −2(5​−5)32​(1+5​)5−5​​​:2(5−5​)32​(1+5​)5−5​​​
−2(5​−5)32​(1+5​)5−5​​​
5​−5=−(5−5​)=−−2(5−5​)32​(1+5​)5−5​​​
Refine=2(5−5​)32​(1+5​)5−5​​​
=2(5−5​)32​(1+5​)5−5​​​
Multiply by the conjugate 5+5​5+5​​=2(5−5​)(5+5​)32​(1+5​)5−5​​(5+5​)​
32​(1+5​)5−5​​(5+5​)=302​5−5​​+1810​5−5​​
32​(1+5​)5−5​​(5+5​)
=32​(1+5​)(5+5​)5−5​​
Expand (1+5​)(5+5​):10+65​
(1+5​)(5+5​)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=1,b=5​,c=5,d=5​=1⋅5+1⋅5​+5​⋅5+5​5​
=1⋅5+1⋅5​+55​+5​5​
Simplify 1⋅5+1⋅5​+55​+5​5​:10+65​
1⋅5+1⋅5​+55​+5​5​
Add similar elements: 1⋅5​+55​=65​=1⋅5+65​+5​5​
Multiply the numbers: 1⋅5=5=5+65​+5​5​
Apply radical rule: a​a​=a5​5​=5=5+65​+5
Add the numbers: 5+5=10=10+65​
=10+65​
=32​5−5​​(10+65​)
Expand 32​5−5​​(10+65​):302​5−5​​+1810​5−5​​
32​5−5​​(10+65​)
Apply the distributive law: a(b+c)=ab+aca=32​5−5​​,b=10,c=65​=32​5−5​​⋅10+32​5−5​​⋅65​
=3⋅102​5−5​​+3⋅62​5​5−5​​
Simplify 3⋅102​5−5​​+3⋅62​5​5−5​​:302​5−5​​+1810​5−5​​
3⋅102​5−5​​+3⋅62​5​5−5​​
3⋅102​5−5​​=302​5−5​​
3⋅102​5−5​​
Multiply the numbers: 3⋅10=30=302​5−5​​
3⋅62​5​5−5​​=1810​5−5​​
3⋅62​5​5−5​​
Multiply the numbers: 3⋅6=18=182​5​5−5​​
Apply radical rule: a​b​=a⋅b​2​5​5−5​​=2⋅5(5−5​)​=182⋅5(5−5​)​
Multiply the numbers: 2⋅5=10=1810(5−5​)​
Apply radical rule: assuming a≥0,b≥010(5−5​)​=10​5−5​​=1810​5−5​​
=302​5−5​​+1810​5−5​​
=302​5−5​​+1810​5−5​​
=302​5−5​​+1810​5−5​​
2(5−5​)(5+5​)=40
2(5−5​)(5+5​)
Expand (5−5​)(5+5​):20
(5−5​)(5+5​)
Apply Difference of Two Squares Formula: (a−b)(a+b)=a2−b2a=5,b=5​=52−(5​)2
Simplify 52−(5​)2:20
52−(5​)2
52=25
52
52=25=25
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=25−5
Subtract the numbers: 25−5=20=20
=20
=2⋅20
Expand 2⋅20:40
2⋅20
Distribute parentheses=2⋅20
Multiply the numbers: 2⋅20=40=40
=40
=40302​5−5​​+1810​5−5​​​
Factor 302​5−5​​+1810​5−5​​:65−5​​(52​+310​)
302​5−5​​+1810​5−5​​
Rewrite as=5⋅65−5​​2​+3⋅65−5​​10​
Factor out common term 65−5​​=65−5​​(52​+310​)
=4065−5​​(52​+310​)​
Cancel the common factor: 2=203(52​+310​)5−5​​​
=203(52​+310​)5−5​​​
=203(52​+310​)5−5​​​

Popular Examples

tan(76)sin(675)csc(-270)2cos^2(0)tan((17pi)/6)

Frequently Asked Questions (FAQ)

  • What is the value of 3/(tan(36)) ?

    The value of 3/(tan(36)) is (3(5sqrt(2)+3sqrt(10))sqrt(5-\sqrt{5)})/(20)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024