Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(5x+43)=cos(-x+31)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(5x+43)=cos(−x+31∘)

Solution

x=72064800∘n+10620∘−7740​,x=108021780∘+64800∘n−7740​
+1
Radians
x=144559π​​−443​+720360π​n,x=−643​+2165121π​​+1080360π​n
Solution steps
sin(5x+43)=cos(−x+31∘)
Rewrite using trig identities
sin(5x+43)=cos(−x+31∘)
Use the following identity: cos(x)=sin(90∘−x)sin(5x+43)=sin(90∘−(−x+31∘))
sin(5x+43)=sin(90∘−(−x+31∘))
Apply trig inverse properties
sin(5x+43)=sin(90∘−(−x+31∘))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn5x+43=90∘−(−x+31∘)+360∘n,5x+43=180∘−(90∘−(−x+31∘))+360∘n
5x+43=90∘−(−x+31∘)+360∘n,5x+43=180∘−(90∘−(−x+31∘))+360∘n
5x+43=90∘−(−x+31∘)+360∘n:x=72064800∘n+10620∘−7740​
5x+43=90∘−(−x+31∘)+360∘n
Expand 90∘−(−x+31∘)+360∘n:x+360∘n+59∘
90∘−(−x+31∘)+360∘n
−(−x+31∘):x−31∘
−(−x+31∘)
Distribute parentheses=−(−x)−(31∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=x−31∘
=90∘+x−31∘+360∘n
Simplify 90∘+x−31∘+360∘n:x+360∘n+59∘
90∘+x−31∘+360∘n
Group like terms=x+360∘n+90∘−31∘
Least Common Multiplier of 2,180:180
2,180
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 180=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 90∘:multiply the denominator and numerator by 9090∘=2⋅90180∘90​=90∘
=90∘−31∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180180∘90−5580∘​
Add similar elements: 16200∘−5580∘=10620∘=x+360∘n+59∘
=x+360∘n+59∘
5x+43=x+360∘n+59∘
Move 43to the right side
5x+43=x+360∘n+59∘
Subtract 43 from both sides5x+43−43=x+360∘n+59∘−43
Simplify5x=x+360∘n+59∘−43
5x=x+360∘n+59∘−43
Move xto the left side
5x=x+360∘n+59∘−43
Subtract x from both sides5x−x=x+360∘n+59∘−43−x
Simplify4x=360∘n+59∘−43
4x=360∘n+59∘−43
Divide both sides by 4
4x=360∘n+59∘−43
Divide both sides by 444x​=4360∘n​+459∘​−443​
Simplify
44x​=4360∘n​+459∘​−443​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 4360∘n​+459∘​−443​:72064800∘n+10620∘−7740​
4360∘n​+459∘​−443​
Apply rule ca​±cb​=ca±b​=4360∘n+59∘−43​
Join 360∘n+59∘−43:18064800∘n+10620∘−7740​
360∘n+59∘−43
Convert element to fraction: 360∘n=180360∘n180​,43=18043⋅180​=180360∘n⋅180​+59∘−18043⋅180​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180360∘n⋅180+10620∘−43⋅180​
360∘n⋅180+10620∘−43⋅180=64800∘n+10620∘−7740
360∘n⋅180+10620∘−43⋅180
Multiply the numbers: 2⋅180=360=64800∘n+10620∘−43⋅180
Multiply the numbers: 43⋅180=7740=64800∘n+10620∘−7740
=18064800∘n+10620∘−7740​
=418064800∘n+10620∘−7740​​
Apply the fraction rule: acb​​=c⋅ab​=180⋅464800∘n+10620∘−7740​
Multiply the numbers: 180⋅4=720=72064800∘n+10620∘−7740​
x=72064800∘n+10620∘−7740​
x=72064800∘n+10620∘−7740​
x=72064800∘n+10620∘−7740​
5x+43=180∘−(90∘−(−x+31∘))+360∘n:x=108021780∘+64800∘n−7740​
5x+43=180∘−(90∘−(−x+31∘))+360∘n
Expand 180∘−(90∘−(−x+31∘))+360∘n:180∘−x−59∘+360∘n
180∘−(90∘−(−x+31∘))+360∘n
Expand 90∘−(−x+31∘):x+59∘
90∘−(−x+31∘)
−(−x+31∘):x−31∘
−(−x+31∘)
Distribute parentheses=−(−x)−(31∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=x−31∘
=90∘+x−31∘
Simplify 90∘+x−31∘:x+59∘
90∘+x−31∘
Group like terms=x+90∘−31∘
Least Common Multiplier of 2,180:180
2,180
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 180:2⋅2⋅3⋅3⋅5
180
180divides by 2180=90⋅2=2⋅90
90divides by 290=45⋅2=2⋅2⋅45
45divides by 345=15⋅3=2⋅2⋅3⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 180=2⋅2⋅3⋅3⋅5
Multiply the numbers: 2⋅2⋅3⋅3⋅5=180=180
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 180
For 90∘:multiply the denominator and numerator by 9090∘=2⋅90180∘90​=90∘
=90∘−31∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180180∘90−5580∘​
Add similar elements: 16200∘−5580∘=10620∘=x+59∘
=x+59∘
=180∘−(x+59∘)+360∘n
−(x+59∘):−x−59∘
−(x+59∘)
Distribute parentheses=−(x)−(59∘)
Apply minus-plus rules+(−a)=−a=−x−59∘
=180∘−x−59∘+360∘n
5x+43=180∘−x−59∘+360∘n
Move 43to the right side
5x+43=180∘−x−59∘+360∘n
Subtract 43 from both sides5x+43−43=180∘−x−59∘+360∘n−43
Simplify5x=180∘−x−59∘+360∘n−43
5x=180∘−x−59∘+360∘n−43
Move xto the left side
5x=180∘−x−59∘+360∘n−43
Add x to both sides5x+x=180∘−x−59∘+360∘n−43+x
Simplify6x=180∘−59∘+360∘n−43
6x=180∘−59∘+360∘n−43
Divide both sides by 6
6x=180∘−59∘+360∘n−43
Divide both sides by 666x​=30∘−659∘​+6360∘n​−643​
Simplify
66x​=30∘−659∘​+6360∘n​−643​
Simplify 66x​:x
66x​
Divide the numbers: 66​=1=x
Simplify 30∘−659∘​+6360∘n​−643​:108021780∘+64800∘n−7740​
30∘−659∘​+6360∘n​−643​
Group like terms=30∘−643​+6360∘n​−659∘​
Apply rule ca​±cb​=ca±b​=6180∘−43+360∘n−59∘​
Join 180∘−43+360∘n−59∘:18021780∘+64800∘n−7740​
180∘−43+360∘n−59∘
Convert element to fraction: 180∘=180∘,43=18043⋅180​,360∘n=180360∘n180​=180∘−18043⋅180​+180360∘n⋅180​−59∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=180180∘180−43⋅180+360∘n⋅180−10620∘​
180∘180−43⋅180+360∘n⋅180−10620∘=21780∘+64800∘n−7740
180∘180−43⋅180+360∘n⋅180−10620∘
Group like terms=32400∘−10620∘+2⋅32400∘n−43⋅180
Add similar elements: 32400∘−10620∘=21780∘=21780∘+2⋅32400∘n−43⋅180
Multiply the numbers: 2⋅180=360=21780∘+64800∘n−43⋅180
Multiply the numbers: 43⋅180=7740=21780∘+64800∘n−7740
=18021780∘+64800∘n−7740​
=618021780∘+64800∘n−7740​​
Apply the fraction rule: acb​​=c⋅ab​=180⋅621780∘+64800∘n−7740​
Multiply the numbers: 180⋅6=1080=108021780∘+64800∘n−7740​
x=108021780∘+64800∘n−7740​
x=108021780∘+64800∘n−7740​
x=108021780∘+64800∘n−7740​
x=72064800∘n+10620∘−7740​,x=108021780∘+64800∘n−7740​
x=72064800∘n+10620∘−7740​,x=108021780∘+64800∘n−7740​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)+1=2cos^2(x)sin(x)+1=2cos2(x)solvefor x,arctan(x^2+9y^2-2x-36y+37)=0solveforx,arctan(x2+9y2−2x−36y+37)=0sin(5x)=sin(x)sin(5x)=sin(x)arcsin(x)= 1/2arcsin(x)=21​4tan(x)=44tan(x)=4
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024