Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,arctan(x^2+9y^2-2x-36y+37)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solve for x,arctan(x2+9y2−2x−36y+37)=0

Solution

x=1+3−y2+4y−4​,x=1−3−y2+4y−4​
Solution steps
arctan(x2+9y2−2x−36y+37)=0
Apply trig inverse properties
arctan(x2+9y2−2x−36y+37)=0
arctan(x)=a⇒x=tan(a)x2+9y2−2x−36y+37=tan(0)
tan(0)=0
tan(0)
Use the following trivial identity:tan(0)=0
tan(0)
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=0
=0
x2+9y2−2x−36y+37=0
x2+9y2−2x−36y+37=0
Solve x2+9y2−2x−36y+37=0:x=1+3−y2+4y−4​,x=1−3−y2+4y−4​
x2+9y2−2x−36y+37=0
Write in the standard form ax2+bx+c=0x2−2x+9y2−36y+37=0
Solve with the quadratic formula
x2−2x+9y2−36y+37=0
Quadratic Equation Formula:
For a=1,b=−2,c=9y2−36y+37x1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(9y2−36y+37)​​
x1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(9y2−36y+37)​​
Simplify (−2)2−4⋅1⋅(9y2−36y+37)​:6−y2+4y−4​
(−2)2−4⋅1⋅(9y2−36y+37)​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅1⋅(9y2−36y+37)​
Multiply the numbers: 4⋅1=4=22−4(9y2−36y+37)​
Factor 22−4(9y2−36y+37):36(−y2+4y−4)
22−4(9y2−36y+37)
Rewrite as=4⋅1−4(37+y2⋅9−36y)
Factor out common term 4=4(1−(37+y2⋅9−36y))
Factor −(9y2−36y+37)+1:9(−y2+4y−4)
1−(37+y2⋅9−36y)
=1−(37+9y2−36y)
−(37+y2⋅9−36y):−37−y2⋅9+36y
−(37+y2⋅9−36y)
Distribute parentheses=−37−y2⋅9−(−36y)
Apply minus-plus rules−(−a)=a,−(a)=−a=−37−y2⋅9+36y
=1−37−y2⋅9+36y
Subtract the numbers: 1−37=−36=−9y2+36y−36
Rewrite as=−9y2+9⋅4y−9⋅4
Factor out common term 9=9(−y2+4y−4)
=4⋅9(−y2+4y−4)
Refine=36(−y2+4y−4)
=36(−y2+4y−4)​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥0=36​−y2+4y−4​
36​=6
36​
Factor the number: 36=62=62​
Apply radical rule: nan​=a62​=6=6
=6−y2+4y−4​
Factor −y2+4y−4:−(y−2)2
−y2+4y−4
Factor out common term −1=−(y2−4y+4)
Factor y2−4y+4:(y−2)(y−2)
y2−4y+4
Break the expression into groups
y2−4y+4
Definition
Factors of 4:1,2,4
4
Divisors (Factors)
Find the Prime factors of 4:2,2
4
4divides by 24=2⋅2=2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2
Add the prime factors: 2
Add 1 and the number 4 itself1,4
The factors of 41,2,4
Negative factors of 4:−1,−2,−4
Multiply the factors by −1 to get the negative factors−1,−2,−4
For every two factors such that u∗v=4,check if u+v=−4
Check u=1,v=4:u∗v=4,u+v=5⇒FalseCheck u=2,v=2:u∗v=4,u+v=4⇒False
u=−2,v=−2
Group into (ax2+ux)+(vx+c)y2−2y−2y+4
=y2−2y−2y+4
Factor out yfrom y2−2y:y(y−2)
y2−2y
Apply exponent rule: ab+c=abacy2=yy=yy−2y
Factor out common term y=y(y−2)
Factor out −2from −2y+4:−2(y−2)
−2y+4
Rewrite 4 as 2⋅2=−2y+2⋅2
Factor out common term −2=−2(y−2)
=y(y−2)−2(y−2)
Factor out common term y−2=(y−2)(y−2)
=−(y−2)(y−2)
Refine=−(y−2)2
=6−(y−2)2​
−(y−2)2​=−y2+4y−4​
−(y−2)2​
Expand −(y−2)2:−y2+4y−4
−(y−2)2
(y−2)2:y2−4y+4
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=y,b=2
=y2−2y⋅2+22
Simplify y2−2y⋅2+22:y2−4y+4
y2−2y⋅2+22
Multiply the numbers: 2⋅2=4=y2−4y+22
22=4=y2−4y+4
=y2−4y+4
=−(y2−4y+4)
Expand −(y2−4y+4):−y2+4y−4
Distribute parentheses=−y2−(−4y)−4
Apply minus-plus rules−(−a)=a,−(a)=−a=−y2+4y−4
=−y2+4y−4
=−y2+4y−4​
=6−y2+4y−4​
x1,2​=2⋅1−(−2)±6−y2+4y−4​​
Separate the solutionsx1​=2⋅1−(−2)+6−y2+4y−4​​,x2​=2⋅1−(−2)−6−y2+4y−4​​
x=2⋅1−(−2)+6−y2+4y−4​​:1+3−y2+4y−4​
2⋅1−(−2)+6−y2+4y−4​​
Apply rule −(−a)=a=2⋅12+6−y2+4y−4​​
Multiply the numbers: 2⋅1=2=22+6−y2+4y−4​​
Factor 2+6−y2+4y−4​:2(1+3−y2−4+4y​)
2+6−y2+4y−4​
Rewrite as=2⋅1+2⋅3−y2−4+4y​
Factor out common term 2=2(1+3−y2−4+4y​)
=22(1+3−y2−4+4y​)​
Divide the numbers: 22​=1=1+3−y2+4y−4​
x=2⋅1−(−2)−6−y2+4y−4​​:1−3−y2+4y−4​
2⋅1−(−2)−6−y2+4y−4​​
Apply rule −(−a)=a=2⋅12−6−y2+4y−4​​
Multiply the numbers: 2⋅1=2=22−6−y2+4y−4​​
Factor 2−6−y2+4y−4​:2(1−3−y2−4+4y​)
2−6−y2+4y−4​
Rewrite as=2⋅1−2⋅3−y2−4+4y​
Factor out common term 2=2(1−3−y2−4+4y​)
=22(1−3−y2−4+4y​)​
Divide the numbers: 22​=1=1−3−y2+4y−4​
The solutions to the quadratic equation are:x=1+3−y2+4y−4​,x=1−3−y2+4y−4​
x=1+3−y2+4y−4​,x=1−3−y2+4y−4​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(5x)=sin(x)sin(5x)=sin(x)arcsin(x)= 1/2arcsin(x)=21​4tan(x)=44tan(x)=4tan(x/2)+1=0tan(2x​)+1=07tan^3(x)-21tan(x)=07tan3(x)−21tan(x)=0
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024